В левой части неравенства угадывается формула квадрата суммы, всё, что осталось, переносим в правую часть.
Если нужно, чтобы у неравенства не было решений, правая часть должна была отрицательной:
Вспоминаем, что нужно найти такие b, чтобы такое неравенство выполнялось при всех a. Относительно a левая часть либо линейная функция (при b = 1/2), либо квадратичная.
Разбираем случаи:
1) b = 1/2. Тогда при всех a должно быть так:
Понятно, что это выполняется не при всех a, так что b = 1/2 в ответ входить не должно.
2) b не равно 1/2. Квадратный трёхчлен должен принимать только положительные значения. Как известно, так будет, если: 1. Коэффициент при a^2 положительный и 2. Дискриминант отрицательный.
Подробное объяснение: 1) Ищем нули функции: первая скобка равна нулю при х=-2 вторая скобка равна нулю при х=4 2) Рисуем числовую ось и расставляем на ней найденные нули функции - точки -2 и 4 (-2)(4) Точки рисуем с пустыми кружочками ("выколотые"), т.к. неравенство у нас строгое (знак < )
3) Начинаем считать знаки на каждом интервале, начиная слева-направо. Для этого берём любую удобную для подсчёта точку из интервала, подставляем её вместо икс и считаем знак: 1. х=-100 -100+2 <0 знак минус -100-4 <0 знак минус минус*минус=плюс Ставим знак плюс в крайний левый интервал + (-2)(4)
2. аналогично, х=0 0+2 >0 знак плюс 0-4 <0 знак минус плюс*минус=минус + _ (-2)(4)
3. x=100 100+2>0 знак плюс 100-4>0 знак плюс плюс*плюс=плюс + - + (-2)(4)
Итак, знаки на интервалах мы расставили. Смотрим на знак неравенства: < 0 Значит, нам надо взять только те интервалы, где стоят минусы. В данном случае, такой интервал один (-2;4) Это и есть ответ.
Теперь краткая запись решения: (х+2)(х-4)<0 + - + (-2)(4)
В левой части неравенства угадывается формула квадрата суммы, всё, что осталось, переносим в правую часть.
Если нужно, чтобы у неравенства не было решений, правая часть должна была отрицательной:
Вспоминаем, что нужно найти такие b, чтобы такое неравенство выполнялось при всех a. Относительно a левая часть либо линейная функция (при b = 1/2), либо квадратичная.
Разбираем случаи:
1) b = 1/2. Тогда при всех a должно быть так:
Понятно, что это выполняется не при всех a, так что b = 1/2 в ответ входить не должно.
2) b не равно 1/2. Квадратный трёхчлен должен принимать только положительные значения. Как известно, так будет, если: 1. Коэффициент при a^2 положительный и 2. Дискриминант отрицательный.
Первое условие:
Второе условие:
Окончательно 5/7 < b < 1