1б) √0,17 > 0,4.
1в) √2,3 < √2 1/3.
2а) -1; -0,5; √0,2; √0,25; 0,7.
2б) 1/3; √2/9; √0,4; 1,8; √3 1/3.
Объяснение:
1б) √0,17 и 0,4
√0,17 и √0,16
0,17>0,16 , значит √0,17 > √0,16 и √0,17 > 0,4.
1в) √2,3 и √2 1/3
√2 3/10 и √2 1/3
√2 9/30 и √2 10/30
2 9/30 < 2 10/30, значит √2 9/30 < √2 10/30 и √2,3 < √2 1/3.
2а) 0,7; -1; √0,2; -0,5; √0,25
√0,49; -1; √0,2; -0,5; √0,25
т.к. 0,2<0,25<0,49, то √0,2 < √0,25 < √0,49
-1 < -0,5 < √0,2 < √0,25 < √0,49
-1 < -0,5 < √0,2 < √0,25 < 0,7.
ответ: -1; -0,5; √0,2; √0,25; 0,7.
2б) √0,4; 1/3; √2/9; √3 1/3; 1,8
√2/5; √1/9; √2/9; √3 3/9; √3,24
√2/5; √1/9; √2/9; √3 3/9; √3 6/25
√90/225; √25/225; √50/225; √3 75/225;√3 54/225
т.к. 25/225 < 50/225 < 90/225 < 3 54/225 < 3 75/225, то
√25/225 < √50/225 < √90/225 < √3 54/225 < √3 75/225
1/3 < √2/9 < √0,4 < 1,8 < √3 1/3.
ответ: 1/3; √2/9; √0,4; 1,8; √3 1/3.
Объяснение:
a)
x²=xy+3
xy=-2 подставим это в первое уравнение
x²=-2+3=1
x₁=1 y₁=-2/x=-2
x₂=-1 y₂=-2/(-1)=2
b)
x(y+1)=0
x+5xy+y=4
1й случай х=0 подставим во второе уравнение получим у=4
2й случай у+1=0 у=-1 подставим во второе уравнение получим
х-5х-1=4 ; -4x=5 x=-5/4=0,8
c) этот пример не видно
другой номер
a) y=x^2 это парабола с вершиной в точке (0;0)
y=x+2 это прямая у=х которая является биссектрисой первой координатной четверти перемещенная вверх на 2 единицы
построим схематично графики
видно что графики имеют две точки пересечения значит система имеет два решения
если решать этот пример через дискриминант то тогда
x²=x+2
x²-x-2=0
d=1+8=9
x₁₋₂=(1±3)/2={-1;2}