B: «в течение года перегорит 2-я лампочка». Так как лампочки перегорают независимо друг от друга, то события A и B независимы. Вероятность перегорания только первой лампочки, равна P(A)∙[1-P(B)], а вероятность перегорания только второй лампочки: [1-P(A)]∙ P(B). Нас интересует возникновение ИЛИ первого исхода ИЛИ второго исхода. (Союз ИЛИ в теории вероятностей соответствует сложению вероятностей). Получаем (для несовместных исходов):
Здесь важна последняя цифра числа 1007. Т.к. число всё время умножается на само себя, то от последней цифры (7) зависит, какая будет последняя цифра числа, возведённого в степень. Проследим, на какую цифру оканчиваются несколько первых степеней числа 1007. Это легко сделать, потому что достаточно последнюю цифру умножать на 7. Как видим, наблюдается циуличность через каждые 4 степени. Поэтому достаточно степень разделить на 4 и посмотреть, какой будет остаток. Если остаток равен 1, то на конце 7, если 2 - то 9, если 3 - то 3, если 0 - то 1. Делим 1025 на 4 получаем 256 и 1 в остатке. Следовательно, искомое число оканчивается на 7.
A: «в течение года перегорит 1-я лампочка»;
B: «в течение года перегорит 2-я лампочка».
Так как лампочки перегорают независимо друг от друга, то события A и B независимы. Вероятность перегорания только первой лампочки, равна P(A)∙[1-P(B)], а вероятность перегорания только второй лампочки: [1-P(A)]∙ P(B). Нас интересует возникновение ИЛИ первого исхода ИЛИ второго исхода. (Союз ИЛИ в теории вероятностей соответствует сложению вероятностей). Получаем (для несовместных исходов):