(x²-ax +1)/(x+3)=0 ОДЗ x≠-3 1. D=a²-4=0 a=2 , x²-2x +1=0 x=1 одно решение a=-2, x²+2x +1=0 x=-1 одно решение 2. D=a²-4 >0, и один корень равен -3: a∈(-∞;-2)∪(2;∞) х₀-3=a -3x₀=1 ⇔ при a=-3-1/3 x=-1/3 одно решение
4) При каких a неравенство 2x-a>0 является следствием неравенства x+2a-3>0
2x-a>0 x>a/2 - + (a/2).....---.
x+2a-3>0 x>-2a+3 - + (-2a+3)..---.---.....---
неравенство 2x-a>0 является следствием неравенства x+2a-3>0 другими словами x∈(a/2;∞)⊆x∈(-2a+3;∞)⇔(-2a+3)≤a/2 ⇔2,5a≥3 ⇔2,5a≥3 ⇔ a≥6/6
1) Вспоминаем и (или) выводим формулы sin (pi + 2a) = -sin 2a sin 3a = sin(2a + a) = sin 2a*cos a + cos 2a*sin a = = 2sin a*cos a*cos a + (1 - 2sin^2 a)*sin a = = sin a*(2cos^2 a - 2sin^2 a + 1) = sin a*(2 - 2sin^2 a - 2sin^2 a + 1) Получаем sin 3a = sin a*(3 - 4sin^2 a) Аналогично cos 3a = cos a*(4cos^2 a - 3) Подставляем (sin a*(1 - 3 + 4sin^2 a)) / (cos a*(1 - 4cos^2 a + 3)) + cos 2a / sin 2a = = tg a*(4sin^2 a - 2) / (4 - 4cos^2 a) + ctg 2a = -2tg a/(4sin^2 a)*cos 2a + ctg 2a = = ctg 2a - sin a/cos a*cos 2a/(2sin^2 a) = ctg 2a - cos 2a/(cos a*2sin a) = = ctg 2a - cos 2a/sin 2a = ctg 2a - ctg 2a = 0
2) У вас опечатка. Вместо = cos(3pi + 2a) должно быть + cos(3pi + 2a) Числитель sin^4 a + 2sin a*cos a - cos^4 a = sin^4 a - cos^4 a + sin 2a = = (sin^2 a + cos^2 a)(sin^2 a - cos^2 a) + sin 2a = 1*(-cos 2a) + sin 2a = = sin 2a - cos 2a = cos 2a*(sin 2a/cos 2a - 1) = cos 2a*(tg 2a - 1) Поэтому дробь равна cos 2a Получаем cos 2a + cos(3pi + 2a) = cos 2a - cos 2a = 0
cos3x*cosx = cos2x
1/2*[cos(3x-x) + cos(3x + x)] = cos2x
cos2x - cos4x = 2 cos2x
cos4x - cos2x = 0
2*[sin(4x + 2x)/2 * sin(2x - 4x)/2] = 0
1) sin3x = 0
3x = πn, n∈Z
x = πn/3, n∈z
2) sinx = 0
x = πk, k∈Z