Найдём 1 производную и приравняем её нулю: y'(x)=6*x²-6*x=0⇒6*x=6*x²⇒x=x²⇒x1=0, x2=1 - в этих точках 1 производная равна нулю. При x<x1 значение y'>0 (y'(-1)=12), то есть функция возрастает при увеличении х. На интервале x>x2 значение y'>0 (y'(2)=12), функция также возрастает при увеличении х. В интервале между х1 и х2 значение 1 производной меньше нуля (y'(0,5)=-1,5) и функция уменьшается при увеличении х.
ответ: промежутки возрастания от -∞ до х1=0 и от х2=1 до +∞, промежуток убывания от х1 до х2.
Так как 9ˣ>0 для любых х∈R, то разделим обе части уравнения на 9ˣ
Произведем замену переменных y=2ˣ y²-2y-8>0 Решим неравенство по методу интервалов D=2²-4(-8)=4+32=36 y₁=(2-6)/2=-2 y₁=(2+6)/2=4 y²-2y-8=(y-4)(y+2) Заново запишем неравенство после разложения на множители (y-4)(y+2)>0 На числовой оси отложим точки где левая часть неравенства меняет свой знак и знаки левой части полученные по методу подстановки + 0 - 0 + ----------!------------!-------- -2 4 Следовательно неравество истинно для всех значений у∈(-∞;-2)U(4;+∞) Учитывая, что 2ˣ>0 для всех значений х∈R интервал (-∞;-2) не входит в область допустимых решений неравенства. Находим значение х 2ˣ>4 2ˣ>2² x>2 Следовательно решением неравенства являются все значения x∈(2;+∞) Минимальным целым значением является x=3 ответ: 3
ответ: промежутки возрастания от -∞ до х1=0 и от х2=1 до +∞, промежуток убывания от х1 до х2.