Пусть х км/ч - скорость катера, то (х-2) км/ч скорость катера против течения, а (х+2) скорость катера по течению, значит время затраченное по реке: 15/х-2 + 6/х+2, а оно равно времени по озеру: 22/х
Составим уравнение:
15/х-2+6/х+2=22/х (каждое слагаемое умножим на "х(х-2)(х+2)
15х(х+2)+6х(х-2)=22х^2-88
15х^2+30x+6x^2-12x-22x^2+88=0
-x^2+18x+88=0
x^2-18x-88=0
Д= b^2-4ac= (-18)^2 - 4(1)(-88)= 676
x1= -b+-Корень из Дискриминанта / 2а = 18+26/2=22;
х2= 18-26/2=-4 Посторонний корень, т.к. скорость не может быть отрицательной.
ответ: 22 км/ч
ответ: Очень специфическое задание , где откопали его?
x^8 +98*x^4*y^4 +y^8 = (x^4 -4*x^3*y+8*x^2*y^2 +4*y^3*x+y^4)*
*(x^4 +4*x^3*y+8*x^2*y^2 -4*y^3*x+y^4)
Объяснение:
x^8 +98*x^4*y^4 +y^8 = y^8* ( (x/y)^8 +98*(x/y)^4 +1)
Пусть для удобства : x/y = t
t^8+98*t^4 +1 = ( t^8 +64*t^4 +1 ) +34*t^4
Используем формулу :
(a+b+c)^2 = a^2+b^2+c^2+2*ab+2*ac +2*bc
a^2+b^2+c^2 = (a+b+c)^2 - (2*ab+2*ac +2*bc)
t^8 +64*t^4+1 +34*t^4= (t^4)^2 +(8*t^2)^2 +1^2 + 34*t^4=
= (t^4+8*t^2+1)^2 -(16*t^6 +2*t^4 +16*t^2 )+34*t^4 =
= (t^4+8*t^2+1)^2 - (16*t^6 -32*t^4 +16*t^2) =
= (t^4+8*t^2+1)^2 - ( 4t^3 -4t)^2 = {разность квадратов} =
=(t^4+8*t^2 +1 -4*t^3+4t)*(t^4+8*t^2 +1 +4*t^3-4t) =
=(t^4 -4*t^3+8*t^2 +4*t+1)*(t^4 +4*t^3+8*t^2 -4*t+1)
Учитывая, что t=x/y
x^8 +98*x^4*y^4 +y^8 =
=y^8 * (t^4 -4*t^3+8*t^2 +4*t+1)*(t^4 +4*t^3+8*t^2 -4*t+1) =
={Умножим каждую скобку на y^4 } = =(x^4 -4*x^3*y+8*x^2*y^2 +4*y^3*x+y^4)*
*(x^4 +4*x^3*y+8*x^2*y^2 -4*y^3*x+y^4)
дальше просто вычисляем.
12*x - 56-105-15*x=-188
-3x=-27
x = 7