Решим второе неравенство _____-6_________-1_______ + - + и Найдем пересечение решений ответ: и 2. ( я нашла корни по теореме Виета) _____-2______-1________ + - + ответ: и Решим первое неравенство, найдем корни, приравняв нулю. Разложим на множители 1 неравенство Отметим точки на числовой прямой, причем -2-закрашенная, а 4 и - 4 выколотые( исключены вторым неравенством) ______-4______-2_____4________ + - + + Знаки ставятся справа налево начиная с +. Тк (х-4)^2, то на следующем промежутке знак не поменяется, далее чередуются -, + ООФ
Приравняем к нулю
Произведение равно нулю, если один из множителей равен нулю
Оценим в виде двойного неравенства
Т.е. при
Снова оценим в виде двойного неравенства
При
Общее решение:
Проверим будут ли неравенства иметь решения при a=0 и а=3
Если а=0, то неравенство запишется так
Корни будут х=0 и х=2
___-___(0)__-___(2)__+___
x ∈ (2;+∞)
Следовательно общих решений с x ∈ [-1;1] нет, значит а=0 подходит
Если а=3, то
Приравниваем к нулю:
___+___(-√3)___-___(-1)___+____(√3)___-___
x ∈ (-√3;-1) U (√3;+∞)
Общее решение неравенства (3-x²)(x+1)<0 с неравенство x²≤1 нет, следовательно а=3 тоже подходит
ответ: