Пусть n – первое число, тогда второе n+1 ( т. к. по условию три последовательных числа) , третье n+2. сумма квадратов равна 2030, т. е. n²+(n+1)²+(n+2)²=2030 раскрываем скобки n²+ n²+2n+1+ n²+4n+4=2030 n²+ n²+2n+1+ n²+4n+4-2030=0 приводим подобные 3 n²+6n-2025=0 вынесем общий множитель 3, для простоты расчета 3 (n²+2n-675)=0 или n²+2n-675=0 дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле д=в²-4ас=2²-4*1*(-675)=4+2700=2704 корни квадратного уравнения определим по формуле n₁=-в+√д/2а=-2+√2704/2*1=-2+52/2=50/2=25 n2=-в+√д/2а=-2-√2704/2*1=-2-52/2=-54/2=-27 натуральное число это числа используемые для счета, следовательно подходит только один корень. соответственно, первое число равно 25, второе 26, третье 27
Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20 Получилась система уравнений: х+y=8 120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
3^17*6^16/18^15
разложим 18^15 на 6^15×3^15, тогда:
3^17*6^16/6^15×3^15
сокращаем и остается
3²×6=9×6=54