a)y(наиб)=2
y(наим)=-2
b)y(наим)=-29
y(наиб)=31
Объяснение:
a)
1)Находим производную функции :
f'(x)=3x^2-3
2) Приравниваем производную к 0 ( находим нули производной):
3x^2-3=0 --> x=1
x=-1
3) Промежутку принадлежит только точка x=1 , поэтому значения функции на концах и в точке 1:
f(0)=0
f(1)=-2-наим
f(2)=8-6=2-наиб
б)
1)Находим производную функции :
f'(x)=3x^2+3
2) Приравниваем производную к 0 ( находим нули производной):
3x^2+3=0 --> решений нет , значит наибольшее значение достигает правом конце отрезка [-3;3] , а наименьшее - в левом:
3) f(-3)=-27-3+1=-29
f(3)=27+3+1=31
1.в
2.в
3.в
4.б
5.б
6.а
7.а) x1=0; x2=6; б) x1=-0,4; x2=0,4;
8.(2x+9)*(x-1)=0
x1= -4.5; x2= 1;
9. x^2-5x+4
10. (3x+1)^2=4x^2+5x-1
5x^2+5x+2=0
дискриминант отрицательный.
11. x1=-4; x2=-3; x3=3; x4=4;
12. За т. Вієта сума коренів квадратного рівняння дорівнює другому коефіцієнтові, взятому із протилежним знаком (тобто, x_1+x_2=14)
Формулу x_1^2+x_2^2 можна представити як (x_1+x_2)^2-2x_1*x_2, але для цього ми маємо знати ще добуток коренів.
Добуток коренів (знову-таки за т. Вієта) дорівнює третьому коефіцієнтові (тобто, x_1*x_2=5)
Підставимо значення у формулу: (x_1+x_2)^2-2*x_1*x_2=14^2-2*5=196-10=186