1) Вычислим производную данной функции:
у = -x3 + 3x + 7.
у' = -3х² + 3.
2) Приравняем производную к нулю.
у' = 0; -3х² + 3 = 0; -3х² = -3; х² = 1; х = -1 и х = 1.
3) Определим знаки производной на каждом промежутке:
(-∞; -1) пусть х = -2, у' = -3 * (-2)² + 3 = -12 + 3 = -9. Производная отрицательна, функция убывает.
(-1; 1) пусть х = 0, у' = -3 * 0 + 3 = 3. Производная положительна, функция возрастает.
(1; +∞) пусть х = 2, у' = -3 * 2² + 3 = -12 + 3 = -9. Производная отрицательна, функция убывает.
4) Находим точки экстремума. Получается хmin = -1 (точка минимума) и хmax = 1 (точка максимума). Обе точки входят в промежуток [-3; 3].
5) Вычислим минимальное значение функции в точке хmin = -1.
у = -x3 + 3x + 7 = -(-1)3 + 3 * (-1) + 7 = 1 - 3 + 7 = 5.
ответ: минимальное значение функции на промежутке [-3; 3] равно 5
AC=12
<BAC=30°
BC=?;AB=?;CD=?;CD_|_AB
30° против катета равно полавино гипотеза
АВ=2а;ВС=АВ/2=а
по теорема Пифагора
а²+12²=(2а)²
3а²=144
а²=48
а=√48=4√3
S=(12*a)/2=AB*CD/2
12*4√3=8√3*CD
CD=12*4√3/(8√3)=12/2=6
AB=8√3
BC=4√3
CD=6