М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Groza11
Groza11
02.05.2022 15:33 •  Алгебра

Решите графическим методом уравнения 1)2√x=1,5 2) √x=2x-4 3) √x=2-4x 4) 0,4√x=1-2x

👇
Ответ:
123qwerty0
123qwerty0
02.05.2022

1) Построим графики функций y=2\sqrt{x} и прямую параллельную оси ОХ y=1.5

Графики пересекаются в точке (0.5625; 1.5), где x = 0.5625 - корень данного уравнения

2) Построим график функции y=\sqrt{x} и прямую y=2x-4 проходящую через точки (0;-4), (2;0). Отсюда абсцисса точки пересечения двух графиков x=\dfrac{17+\sqrt{33}}{8}

3) Построим график функции y = √x и прямую y = 2 - 4x, проходящую через точки (0;2), (1;-2). Абсцисса точки пересечения двух графиков равна x=\dfrac{17-\sqrt{33}}{32}

4) Построим график функции y = 0.4√x и прямую y = 1 - 2x, проходящую через точки (0;1), (1;-1). Абсцисса точки пересечения двух графиков равна x=\dfrac{26-\sqrt{51}}{50}


Решите графическим методом уравнения 1)2√x=1,5 2) √x=2x-4 3) √x=2-4x 4) 0,4√x=1-2x
Решите графическим методом уравнения 1)2√x=1,5 2) √x=2x-4 3) √x=2-4x 4) 0,4√x=1-2x
Решите графическим методом уравнения 1)2√x=1,5 2) √x=2x-4 3) √x=2-4x 4) 0,4√x=1-2x
Решите графическим методом уравнения 1)2√x=1,5 2) √x=2x-4 3) √x=2-4x 4) 0,4√x=1-2x
4,7(81 оценок)
Открыть все ответы
Ответ:
Rentels
Rentels
02.05.2022

1. Найти наибольшее и наименьшее значение функции

F(x)=\dfrac{x^2-7x}{x-9}   на промежутке [-4; 1]

Точка разрыва  x=9   в заданный интервал не входит.

F(x)=\dfrac{x^2-7x}{x-9}=x+2+\dfrac{18}{x-9}

Первая производная для нахождения точек экстремумов.

F'(x)=\Big(x+2+\dfrac{18}{x-9}\Big)'=1-\dfrac{18}{(x-9)^2}\\\\F'(x)=1-\dfrac{18}{(x-9)^2}=0\\\\ \dfrac{x^2-18x+81-18}{(x-9)^2}=0~~~\Leftrightarrow~~~\dfrac{x^2-18x+63}{(x-9)^2}=0\\\\ x^2-18x+63=0\\\\ \dfrac{D}4=9^2-63=18=(3\sqrt2)^2\\\\x_1=9+3\sqrt2\approx 13;~~~x_2=9-3\sqrt2\approx 4,75

Обе точки экстремумов не попадают в интервал  x∈[-4; 1]

Значения функции на концах интервала

F(-4)=\dfrac{(-4)^2-7(-4)}{-4-9}=\dfrac{16+28}{-13}=-3\dfrac{5}{13}\\\\F(1)=\dfrac{1^2-7\cdot1}{1-9}=\dfrac{-6}{-8}=0,75

ответ: наименьшее значение функции \boldsymbol{F(-4)=-3\dfrac{5}{13}};

           наибольшее значение функции F(1) = 0,75

-----------------------------------------------------------------------------

2. Записать уравнение касательной к графику

функции   F(x)=x⁴-2x   в точке  x₀=-1

Уравнение касательной имеет вид  y = F(x₀) + F’(x₀)·(x - x₀)

F(-1) = x⁴-2x = (-1)⁴ - 2(-1) = 1+2 = 3

F'(-1) = (x⁴-2x)' = 4x³ - 2 = 4(-1)³ - 2 = -6

y = F(x₀) + F’(x₀)·(x - x₀) = 3 - 6 (x + 1) = 3 - 6x -6 = -6x - 3

ответ:  уравнение касательной   y = -6x - 3

---------------------------------------------------------------------------

3. Исследовать функцию и построить ее график  F(x)=x³-3x²

1) Область определения  D(F) = R

2) Область значений  E(F) = R

3) Нули функции

   F(x)=x³-3x² = 0;      x²(x - 3) = 0;     x₁ = 0;  x₂ = 3

4) Пересечение с осью OY

  x = 0;   F(0) = 0³-3·0² = 0

5) Экстремумы функции

  F'(x) = 0;   (x³-3x²)' = 0;   3x² - 6x = 0;  3x(x - 2) = 0;

  x₁ = 0;  F(0) = 0;   F"(0) = 6x - 6 = -6   ⇒  локальный максимум.

  x₂ = 2;  F(2) = 2³-3·2² = -4;  F"(2) = 6x - 6 = 6  ⇒  локальный минимум.

6) Монотонность функции.

   Интервалы знакопостоянства первой

              производной F'(x) = 3x(x - 2)

   ++++++++ (0) ------------- (2) +++++++++> x

         /                    \                    /

  x ∈ (-∞; 0)∪(2; +∞)  -  функция возрастает

  x ∈ (0;2)  -  функция убывает

7) Функция не периодическая, общего вида (не является чётной, не является нечётной).

8) Дополнительные точки для построения

x₃ = -1;  y₃ = -4;  x₄ = 1;  y₄ = -2

9) График функции в приложении


1. знайти найбільше і ! 1. знайти найбільше і найменше значення функції f(x)= x^2-7x/x-9 на проміжку
4,6(85 оценок)
Ответ:
Education26
Education26
02.05.2022
Y=x^2*(3-x) то есть корни х=0 и х=3
возьмем производную она равна 6х-3x^2=3x(2-x)
точки экстремума х=0 и х=2
методом интервалов находим участки, где производная больше 0 (ф-я возрастает) и меньше 0 (ф-я убывает). Производная больше 0 при х∈(0;2) и отрицательна 
при х∈(-∞, 0)∨(2,∞). в точке х=2 максимум - производная меняет знак с + на -, а точка х=0 локальный минимум,точка перегиба, так как вторая производная равна 6-6х, есть 6-6х=0 или х=1.
итак линия графика такая - она идет сверху вправо вниз до точки х=0, выпуклостью вниз, касается оси Х в точке х=0 и далее в точке х=1 выпуклостью вверх возрастает до точки х=2 и, затем, идет вниз, пересекая ось в точке х=3
4,6(42 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ