Не выполняя построения, определите, пересекаются ли парабола у=1/4х^2 и прямая у=5х-16. если точки пересечения существуют, то найдите их координаты. за ответ
1. . Графиком данной функции является парабола, ветви которой направлены вверх. Следовательно, минимальное значение функции соответствует вершине параболы. 2. Приравняем правые части. Если будет хотя бы одно решение, то парабола и прямая пересекаются в точке этого решения. Так как уравнение имеет два действительных корня, то графики функций пересекаются в двух точках. Найдем координаты у1 и у2, подставив найденные значения х1 и х2 в любое из уравнений заданных функций. Итак, парабола и прямая пересекаются в точках (16;64), (4;4).
I. 2x-5y-3=0 если х=0 то -5y-3=0 5y=-3 y=-3/5 и получаем точку a(0,-3/5) а если y=0 то 2x-3=0 2x=3 x=3/2 и получаем точку b(3/2,0)
в системе отсчёта нарисуем линию соединяющую эти точки. 2x-y=0 (*) и x-3y=4 (**) от (*) y=2x (***) поставим (***) в (**) и получим x-2x=4 от туда x=-4 (****) (****) в (***) y=-8 точка пересечения m(-4,-8)
III. нарисуем графику. от y=5 нарисуем прямую перпендикулярно оси Y...она пересекает прямую 3x+2y=4. от точки пересекания нарисуем прямую перпендикулярно оси X она пересекает ось X в точке -2,,,Это есть абсцисса точки с ординатой 5,
I. 2x-5y-3=0 если х=0 то -5y-3=0 5y=-3 y=-3/5 и получаем точку a(0,-3/5) а если y=0 то 2x-3=0 2x=3 x=3/2 и получаем точку b(3/2,0)
в системе отсчёта нарисуем линию соединяющую эти точки. 2x-y=0 (*) и x-3y=4 (**) от (*) y=2x (***) поставим (***) в (**) и получим x-2x=4 от туда x=-4 (****) (****) в (***) y=-8 точка пересечения m(-4,-8)
III. нарисуем графику. от y=5 нарисуем прямую перпендикулярно оси Y...она пересекает прямую 3x+2y=4. от точки пересекания нарисуем прямую перпендикулярно оси X она пересекает ось X в точке -2,,,Это есть абсцисса точки с ординатой 5,
(1/4)х² = 5х - 16.
(1/4)х² - 5х + 16 = 0.
Решаем уравнение 0.25*x^2-5*x+16=0:
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-5)^2-4*0.25*16=25-4*0.25*16=25-16=9;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(2root9-(-5))/(2*0.25)=(3-(-5))/(2*0.25)=(3+5)/(2*0.25)=8/(2*0.25)=8/0.5=16;
x_2=(-2root9-(-5))/(2*0.25)=(-3-(-5))/(2*0.25)=(-3+5)/(2*0.25)=2/(2*0.25)=2/0.5=4.
Есть 2 точки пересечения:
х1 = 4 у1 = 5*4 - 16 = 20 - 16 = 4.
х2 = 16 у2 = 5*16 - 16 = 80 - 16 = 64.