ответ: 12√39 (ед. площади)
Объяснение:
Прямоугольный треугольник с катетами 3 и 4 - египетский, его гипотенуза 5 ( проверьте по т.Пифагора).
Проекция ВС наклонной В1С перпендикулярна СА. По т. о 3-х перпендикулярах В1С⊥СА. Треугольник В1СА - прямоугольный с углом В1АС=60°. В1С=АС•tg60°=4√3. Т.к. призма прямая, боковые ребра перпендикулярны основаниям, поэтому треугольник В1ВС прямоугольный. По т. Пифагора В1В=√(B1C²-BC²)=√[(4√3)²-3²]=√39
Боковое ребро прямой призмы является её высотой, а её боковые грани - прямоугольники.
Площадь боковой поверхности призмы находят умножением её высоты на периметр основания.
S(бок)=В1В•(АВ+ВС+АС)=√39•12=12√39 (ед. площади)
m = p1^d1 * p2^d2 * p3^d3 * ... * pk^dk
n = p1^q1 * p2^q2 * p3^q3 * ... * pk^qk
Степени могут быть нулеывми.
Где p - простое. Рядом стоящая цифра - индекс.
^ - степень.
m + n = min(p1^d1, p1^q1) * min(p2^d2, p2^q2) * ... * min(pk^dk,pk^qk) + max(p1^d1,p1^q1)* ... * max(pk^dk, pk^qk)
С другой сторноы
m+n = p1^d1*p2^d2+p3^d3*...*pk^dk+p1^q1*p2^q2*...*pk^qk
Чтоб торжество было верно d1 > q1, d2 > q2, d3>q3, ... , dk > qk;
или наоборот d1 < q1, d2 < q2, d3 < q3, ... , dk < qk. Конец решения.
ответ: 1)4ay
2)57x^2-57x^2
3)4k^2
объяснение: