функция задана формулой у=18-2х^2. Не выполняя построения определите
а) координаты точек пересечения графика функции с осями координат
Пересечение в осью Ох: у=0
18-2x²=0
2x²=18
x²=9
x=3 или x=-3
точки пересечения (3;0) или (-3;0)
Пересечение с осью Оу: х=0
18-2*0=18
Точка пересечения (0;18)
б)значение функции если значение аргумента равно 2
18-2*2²=18-2*4=18-8=10
Значение функции y(2)=10
в)значение аргумента, при котором значение функции равно 16
18-2x²=16
2x²=2
x²=1
x=1 или х= -1
г)проходит ли график функции через точку В (-2: 10)
х=-2 у=10
18-2*(-2)²=18-2*4=18-8=10
Да, проходит
2
функция задана формулой у=2х^2-8 . Не выполняя построения определите
а) координаты точек пересечения графика функции с осями координат
пересечение с осью Ох: у=0
2x²-8=0
2x²=8
x²=4
x=2 или х=-2
Точки пересечения (2;0) или (-2;0)
пересечение с осью Оу: х=0
2*0-8= -8
Точка пересечения (0;-8)
б)значение функции если значение аргумента равно 3
у(3)=2*3²-8=2*9-8=18-8=10
в)значение аргумента, при котором значение функции равно -6
2x²-8= -6
2x²=2
x²=1
x=1 или х= -1
г)проходит ли график функции через точку А( -3:10)
х= -3 у=10
2*(-3)²-8=2*9-8=18-8=10
Да, проходит
Объяснение:
1. 1,5 • 62 – 23=93-23=70.
***
2. 1) x^8 • x^2; =x^(8+2)=x^10;
2) x^8 : x^2=x^(8-2)=x^6;
3) (x^8)^2=x^(8*2)=x^16;
4) ((x^4)^5 • x^2)/x^12=x^(4*5)*x^2/x^12=x^(20+2)/x^12=x^(22-12)=x^10.
***
3. 1) –3*a^2*b^4 • 3a^2 • b^5= -9*a^4*b^9;
2) (–4a^2*b^6)^3=(-4)^3*(a^2)^3*(b^6)^3= -64a^6*b^18.
***
4. (5x^2 + 6x – 3) – (2x^2 – 3x – 4) = 5x^2 + 6x – 3 – 2x^2 + 3x + 4 =3x²+9x+1.
***
5. 1) (46 • 29) / 324=1334/324=4 38/324=4 1/162 ;
2) (2 2/3)^5 • (3/8)^6=(8/3)^5*(3/8)^6=(8/3)^5*(8/3)^(-6)=(8/3)^(-1)=3/8.
***
6. 125а^6b^3 • (–0,2a^2b^4)^3= 125*(-0,2)^3*a^6*b^12 = =-125*0,008*a^6*b^12=a^6*b^12.