Объяснение:
Хроматин, его классификация. Строение хромосом.
В ядре клеток обнаруживаются мелкие зернышки и глыбки материала, который окрашивается основными красителями и поэтому был назван хроматином (от греч. chroma – краска) .
Хроматин представляет собой дезоксирибонуклеопротеид (ДНП) и состоит из ДНК, соединённой с белка-ми-гистонами или негистоновыми белками. Гистоны и ДНК объединены в структуры, которые называются нук-леосомами. Хроматин соответствует хромосомам, которые в интерфазном ядре представлены длинными перекру-ченными нитями и неразличимы как индивидуальные структуры. Выраженность спирализации каждой из хромо-сом неодинакова по их длине. Реализацию генетической информации осуществляют деспирализованные участки хромосом.
Классификация хроматина. Различают два вида хроматина:
1) эухроматин, локализующийся ближе к центру ядра, более светлый, более деспирилизованный, менее компакт-ный, более активен в функциональном отношении. Предполагается, что в нем сосредоточена та ДНК, которая в интерфазе генетически активна. Эухроматин соответствует сегментам хромосом, которые деспирализованы и от-крыты для транскрипции. Эти сегменты не окрашиваются и не видны в световой микроскоп.
2) гетерохроматин - плотно спирализованная часть хроматина. Гетерохроматин соответствует конденсированным, плотно скрученным сегментам хромосом (что делает их недоступными для транскрипции) . Он интенсивно окра-шивается основными красителями, и в световом микроскопе имеет вид тёмных пятен, гранул. Гетерохроматин располагается ближе к оболочке ядра, более компактен, чем эухроматин и содержит “молчащие” гены, т. е. гены, которые в настоящий момент неактивны. Различают конститутивный и факультативный гетерохроматин. Консти-тутивный гетерохроматин никогда не переходит в эухроматин и является гетерохроматином во всех типах клеток. Факультативный гетерохроматин может превращаться в эухоматин в некоторых клетках или на разных стадиях онтогенеза организма. Примером скопления факультативного гетерохроматина является тельце Барра – инактиви-рованная Х-хромосома у самок млекопитающих, которая в интерфазе плотно скручена и неактивна. В большинст-ве клеток оно лежит у кариолеммы.
Таким образом, по морфологическим признакам ядра (по соотношению содержания эу- и гетерохромати-на) можно оценить активность процессов транскрипции, а, следовательно, синтетической функции клетки. При её повышении это соотношение изменяется в пользу эухроматина, при снижении – нарастает содержание гетеро-хроматина. При полном подавлении функций ядра (например, в поврежденных и гибнущих клетках, при орогове-нии эпителиальных клеток эпидермиса – кератиноцитов, при образовании ретикулоцитов крови) оно уменьшается в размерах, содержит только гетерохроматин и окрашивается основными красителями интенсивно и равномерно. Такое явление называется кариопикнозом (от греч. karyon – ядро и pyknosis – уплотнение) .
Хроматин и хромосомы представляют собой (ДНП) , но хроматин – это рас-крученное, а хромосомы – скрученное состояние. Хромосом в интерфазном ядре нет, они хромосомы появляются при разрушении ядерной оболочки (во время деления) .
Распределение гетерохроматина (топография его частиц в ядре) и соотношение содержания эу- и гетеро-хроматина характерны для клеток каждого типа, что позволяет осуществить их идентификацию как визуально, так и с автоматических анализаторов изображения. Вместе с тем, имеются определенные общие закономер-ности распределения гетерохроматина в ядре: его скопления располагаются под кариолеммой, прерываясь в об-ласти пор (что обусловлено его связью с ламиной) и вокруг ядрышка (перинуклеолярный гетерохроматин) , более мелкие глыбки разбросаны по всему ядру.
Строение хромосом
Хромосомы представляют собой наиболее упакованное состояние хроматина. Наиболее компактные хромо-сомы видны на стадии метафазы, при этом они состоят из двух хроматид, связанных в области центромеры.
А классификацию хромосом задавайте отдельным вопросом
Воду называют колыбелью жизни. Водоросли же можно назвать одним из первенцев водной стихии: они самые древние представители флоры и фауны, родоначальники растительных организмов, освоивших сушу в палеозойскую эру.
Водоросли играют огромную роль в общем круговороте веществ в природе.
В мировом океане масса фитопланктона составляет около 1,5 миллиарда тонн, за один год морские водоросли создают около 550 миллиардов тонн биомассы, что составляет примерно ¼ всех органических веществ планеты.
Водоросли представляют собой начальное звено в цепях питания всех водных экосистем. Геохимическая роль водорослей связана прежде всего с круговоротом кальция и кремния. Взять, к примеру, рифы - громадные геологические образования, созданные живыми организмами. Постоянными их "строителями" являются не только кораллы, но и различные группы водорослей накоплять в своем теле карбонат кальция.Это преимущественно красные, зеленые и сине-зеленые водоросли. В оболочках клеток красных водорослей литотамний (Lithothamnion), которые иногда называют каменными водорослями, откладывается такое большое количество карбоната кальция, что они приобретают прочность камня, замуровывая отмирающие части колоний.
Водоросли древних эпох "ответственны" за создание многих горных пород.
Так, в третичных отложениях Киргизии и Тувы присутствуют харациты - известняки, сложенные почти исключительно остатками харовых водорослей. В штате Колорадо, в парке Пери найден двенадцатиметровый пласт харацита, простирающийся на 240 м. А скопление графита в доломитах Трансвааля (относящимся к архейской эре) - не что иное, как остатки колоний водорослей, живших 2 млрд 600 млн лет назад.
Где можно найти водоросли? Практически везде! Они встречаются не только в морях и океанах, но и в любых солоноватых и пресноводных водоемах: озерах, реках, прудах и даже лужах! Сфера их обитания определяется нижней границей проникновения света, таким образом, представителей этих растений можно встретить как на поверхности воды, так и на глубине 350-400 м, но не ниже. Крупные водоросли, как правило, прикрепляются ко дну, микроскопические же формы просто парят в толще воды, в ее поверхностном слое.
Вот уже полтора миллиарда лет водоросли являются источником кислорода на нашей планете и входят в число «строителей» озонового слоя. Морские водоросли с успехом используются в сельском хозяйстве, текстильной, парфюмерной и многих других отраслях промышленности. Некоторые виды накапливать радионуклиды, поэтому их используют для дополнительной очистки воды.
В медицине водоросли давно известны своими стимулирующими, антистрессовыми свойствами. Эти растения восстанавливают водно-солевой баланс, обменные процессы в организме и замедляют старение клеток. Отдельные их виды обладают мощным антибактериальным и антивирусным эффектом. Количество водорослей, используемых в талассотерапии, достигает 3 миллиона тонн в год (главным образом это бурые водоросли: Ascophyllium, Fucus, Laminaria и некоторые виды красных).
Секрет морских растений, прежде всего, заключается в особенностях их питания. В отличие от животных, которым для жизни необходимы готовые органические вещества, водоросли (как, впрочем, все растения) в ходе эволюции научились самостоятельно производить органические вещества из неорганических. Используют они при этом простой углекислый газ и воду, сам процесс осуществляется за счет энергии солнечного света и сопровождается выделением кислорода.
Еще один питания водорослей (благодаря которому они и зарекомендовали себя как незаменимый источник всевозможных минеральных веществ