1. Единство химического состава. В состав живых организмов входят те же химические элементы, что и в объекты неживой природы. Однако соотношение различных элементов в живом и неживом неодинаково. В неживой природе самыми распространенными элементами являются кремний, железо, магний, алюминий, кислород. В живых же организмах 98% элементарного (атомного) состава приходится на долю всего четырех элементов: углерода, кислорода, азота и водорода.
2. Обмен веществ. К обмену веществ с окружающей средой все живые организмы. Они поглощают из среды элементы питания и выделяют продукты жизнедеятельности. В неживой природе также существует обмен веществами, однако при небиологическом круговороте они просто переносятся с одного места на другое или меняют свое агрегатное состояние: например, смыв почвы, превращение воды в пар или лед и др. Под развитием понимают необратимое направленное закономерное изменение объектов живой и неживой природы. Ритмичность – свойство, присущее как живой, так и неживой природе. Оно обусловлено различными космическими и планетарными причинами: вращением Земли вокруг Солнца и вокруг своей оси, фазами Луны и т. д. Ритмичность проявляется в периодических изменениях интенсивности физиологических функций и формообразовательных процессов через определенные равные промежутки времени. Хорошо известны суточные ритмы сна и бодрствования у человека, сезонные ритмы активности и спячки у некоторых млекопитающих и многие другие. Ритмичность направлена на согласование функций организма с периодически меняющимися условиями жизни. Таким образом, биологические системы резко отличаются от объектов неживой природы своей исключительной сложностью и высокой структурной и функциональной упорядоченностью. Эти отличия придают жизни качественно новые свойства. Живое представляет собой особую ступень развития материи. Характеризуя жизнь как явление, следует учитывать ее разнообразие и многокачественность, поскольку она представлена на нашей планете биологическими системами различной сложности.
Диссимиляция, или энергетический обмен. В этом процессе высокомолекулярные органические вещества превращаются в простые органические и неорганические. Процесс этот многоступенчатый и сложный. Схематично он может быть сведен к следующим трем этапам: Первый этап — подготовительный. Высокомолекулярные органические вещества ферментативно превращаются в более простые: белки — в аминокислоты, крахмал — в глюкозу, жиры— в глицерин и жирные кислоты. Энергии при этом выделяется немного и вся она переходит в форму тепловой энергии.Второй этап — бескислородный. Образовавшиеся на первом этапе вещества под действием ферментов претерпевают дальнейший распад. В качестве примера может служить гликолиз — ферментативный бескислородный распад молекулы глюкозы до двух молекул молочной кислоты в клетках животных организмов. Процесс этот многоступенчатый (его последовательно осуществляют 13 ферментов) и лишь в самом обобщенном виде может быть изображен так:С6Н12О6 → 2С3Н6O3 + свободная энергия.По мере течения реакции гликолиза на каждом этапе выделяется свободная энергия. Суммарное ее количество распределяется следующим образом: одна часть (≈60%) рассеивается в виде теплоты, а другая («≈0%) сохраняется в клетке и затем используется. Сохранение выделенной энергии происходит через разобранную выше систему «АТФ⇔АДФ». В данном случае за счет энергии, освободившейся при бескислородном расщеплении одной молекулы глюкозы, две молекулы АДФ превращаются в две молекулы АТФ. Позже энергия, как бы законсервированная в молекулах АТФ, будет использована (при их обратном превращении в АДФ) на процессы ассимиляции, переноса возбуждения и т. д.Другим примером бескислородного этапа энергетического обмена может служить спиртовое брожение, при котором из одной молекулы глюкозы в конечном счете образуется две молекулы этилового спирта, две молекулы СО2 и некоторое количество свободной энергии:С6Н12О6 → 2СO2 + 2С2Н5ОН + свободная энергия.Третий этап — кислородный. Это этап окончательного расщепления органических веществ путем окисления кислородом воздуха до простых неорганических: СО2 и Н2О. При этом выделяется максимальное количество свободной энергии, значительная часть которой также резервируется в клетке через образование молекул АТФ. Так, две молекулы молочной кислоты, окисляясь до СО2 и Н2O, передают часть своей энергии 36 молекулам АТФ. Легко видеть, что третий этап энергетического обмена в наибольшей степени обеспечивает клетку свободной энергией, которая запасается путем синтеза АТФ. Все процессы синтеза АТФ осуществляются в митохондриях клеток и универсальны для всего живого. Таким образом, процессы диссимиляции в клетке происходят за счет органических веществ, ранее синтезированных клеткой, и свободного кислорода, поступающего из внешней среды благодаря дыханию. При этом в клетке накапливаются богатые энергией молекулы АТФ, а во внешнюю среду выводятся углекислый газ и избыточное количество воды. В анаэробных организмах, обитающих в бескислородной среде, последний этап диссимиляции осуществляется несколько иным химическим путем, но также с накоплением молекул АТФ