ответ: сложный железосодержащий белок животных, обладающих кровообращением обратимо связываться с кислородом, обеспечивая его перенос в ткани. У позвоночных животных содержится в эритроцитах, у большинства беспозвоночных растворён в плазме крови (эритрокруорин) и может присутствовать в других тканях[1]. Молекулярная масса гемоглобина человека — около 66,8 кДа. Молекула гемоглобина может нести до четырёх молекул кислорода. Один грамм гемоглобина может переносить до 1.34 мл. O2
Большой вклад в исследование структуры и функционирования гемоглобина внёс Макс Фердинанд Перуц, получивший за это в 1962 году Нобелевскую премию[2].
Нормальным содержанием гемоглобина в крови человека считается: у мужчин — 130—160 г/л (нижний предел — 120, верхний предел — 180 г/л), у женщин — 120—160 г/л; у детей нормальный уровень гемоглобина зависит от возраста и подвержен значительным колебаниям. Так, у детей через 1—3 дня после рождения нормальный уровень гемоглобина максимален и составляет 145—225 г/л, а к 3—6 месяцам снижается до минимального уровня — 95—135 г/л, затем с 1 года до 18 лет отмечается постепенное увеличение нормального уровня гемоглобина в крови[3].
Во время беременности в организме женщины происходит задержка и накопление жидкости, что является причиной гемодилюции — физиологического разведения крови. В результате наблюдается относительное снижение концентрации гемоглобина (при беременности уровень гемоглобина в норме составляет 110—155 г/л). Кроме этого, в связи с внутриутробным ростом ребёнка происходит быстрое расходование запасов железа и фолиевой кислоты. Если до беременности у женщины был дефицит этих веществ, проблемы, связанные со снижением гемоглобина, могут возникнуть уже на ранних сроках беременности[4].
Главные функции гемоглобина: перенос кислорода и буферная функция. У человека в капиллярах лёгких в условиях избытка кислорода последний соединяется с гемоглобином. Потоком крови эритроциты, содержащие молекулы гемоглобина со связанным кислородом, доставляются к органам и тканям, где кислорода мало; здесь необходимый для протекания окислительных процессов кислород освобождается от связи с гемоглобином. Кроме того, гемоглобин связывать в тканях небольшое количество диоксида углерода (CO2) и освобождать его в лёгких.
Объяснение:
тут всё о нём
Освоение суши было связано с переходом к дыханию кислородом воздуха. Органы водного дыхания – жабры – у наземных позвоночных во взрослом состоянии, как правило, атрофированы. Однако низшие наземные позвоночные – земноводные – еще сохранили многие важные особенности дыхательной системы, характерные для их рыбообразных предков. (У обитающих в воде личинок современных земноводных имеются наружные жабры, которые сохраняются в течение всей жизни при неотении – задержке онтогенеза с приобретением к половому размножению на личиночной стадии. В морфологическом отношениилегкие амфибий устроены, по существу, довольно сходно с легкими двоякодышащих рыб. Это парные мешкообразные органы, открывающиеся в общую гортанно-трахейную камеру (вытянутую у некоторых хвостатых амфибий в короткую трубку – трахею, стенки которой поддерживаются хрящевыми кольцами). В свою очередь, гортанно-трахейная камера открывается гортанной щелью в задней части дна ротоглоточной полости. Внутренняя поверхность легких у некоторых видов земноводных почти гладкая, у других – ячеистая (имеются перегородки первого, второго и третьего порядка, выступающие от стенок легкого в его полость и существенно увеличивающие поверхность газообмена). В стенках легких, как и у двоякодышащих рыб, имеются гладкие мышечные волокна. Для вентиляции дыхательной системы земноводные используют не ротовое отверстие, как рыбы, а короткие носовые ходы, открывающиеся наружными ноздрями во внешнюю среду, а внутренними ноздрями, или хоанами,– в передней части крыши ротовой полости. У большинства рыб имеются две пары наружных ноздрей, служащих для обмена воды в органе обоняния. У двоякодышащих и кистеперых рыб задняя пара этих отверстий переместилась в ротовую полость и стала хоанами, но носовые ходы у них используются также только для обслуживания органа обоняния. У земноводных эти ходы получают дополнительную функцию дыхательных каналов. Механизм вентиляции легких у амфибий, в сущности, тот же, что и у двоякодышащих рыб. После утраты жабер скелетные жаберные дуги подверглись частичной редукции, но сохранившаяся их часть срослась с элементами нижней части подъязычной дуги, образовав так называемый подъязычный аппарат – костно-хрящевую пластину, расположенную среди мышц дна ротоглоточной полости, которые представляют собой преобразованные мышцы жаберного аппарата рыб. (Из преобразованных элементов жаберных дуг образуются у наземных позвоночных также гортанные хрящи – черпаловидные и перстневидный, у млекопитающих, кроме того, и щитовидный.) При сокращении одной группы мышц подъязычный аппарат поднимается, сужая ротоглоточной полости; другие мышцы совершают обратное движение, они могут также смещать подъязычный аппарат в горизонтальной плоскости. Эти движения используются при глотании пищи и при заглатывании воздуха в легкие (подобно тому, как это делается у двоякодышащих рыб). Легкие и дыхательные пути у пресмыкающихся более сложно дифференцированы, чем у земноводных. Внутренние перегородки разделили полость легкого на сложную систему камер разного размера и воздушных ходов (особенно сложно устроены легкие у крокодилов). Трахея стала значительно длиннее (в связи с обособлением шейного отдела) и перед входом в легкие разделилась на два бронха, ведущих к легким. У змей, с их длинным и узким телом, сохранилось лишь одно (правое) легкое. Вентиляция этого легкого при его значительной длине затруднена. Решилась эта проблема у змей путем развития так называемого воздушного мешка, представляющего собой тонкостенный пузыревидный орган, продолжающий легкое сзади. Стенки дыхательного мешка лишены респираторной ткани, и газообмен с кровью в этом органе не происходит. Благодаря наличию воздушного мешка в легком змеи нет застойного воздуха – он остается в воздушном мешке, смешиваясь со свежими порциями воздуха при каждом вдохе. А легкое, таким образом, является сквозным органом, через который воздух прокачивается при вдохе и выдохе в разных направлениях. В связи с тем, что змеи ползают, опираясь на концы своих ребер, обычный для амниот механизм движений грудной клетки у них не может функционировать. Изменения объема полости тела у змей происходят посредством движений средней части брюха, к которой прикрепляются специальные мышцы, начинающиеся от внутренней стороны ребер. Их сокращение несколько втягивает брюшную стенку тела внутрь. Точно так же не может работать насос грудной клетки иу черепах, у которых ребра срослись с панцирем. У черепах объем легких изменяется сокращением разных групп брюшных мышц и движениями плечевого пояса. У крокодилов всасывающий насос грудной клетки усилен поршнеобразными движениями печени, которая сокращением специального диафрагмального мускула, тянущегося к ней от костей таза, может несколько смещаться назад, что увеличивает объем грудной полости (вдох). Сокращение поперечных мышц живота возвращает печень в исходное положение (выдох).
1% - x
x= 32,07 калорий в 1 проценте
1) 10 х 32.07= 320.7к завтрак
2) 25 х 32.07= 801.75к полдник
3)45 х 32.07= 1443.15к обед
4)20 х 32.07= 641.4к ужин