Основная идея решения задачи заключается в том, что если из суммы возрастов трёх девочек вычесть сумму возрастов двух из них, то получится возраст третьей девочки.
Так как Вере, Наде и Любе вместе 38 лет, а Вере и Наде вместе 28 лет, то Любе 38 – 28 = 10 лет. Так как Наде и Любе вместе 23 года, а Любе 10 лет, то Наде 23 – 10 = 13 лет. Так как Вере и Наде вместе 28 лет, а Наде 13 лет, то Вере 28
– 13 = 15 лет.
Для сравнения можно привести ещё одно решение.
Обозначим количество лет Веры, Нади и Любы соответственно В, Н и Л. Тогда условия задачи можно записать в виде трёх верных равенств:
В + Н + Л = 38,
В + Н = 28,
Н + Л = 23.
Вычитая из первого равенства второе, а потом третье, получим, что
Л =10, В = 15. Теперь легко вычислить возраст Нади:
Н = 38 – 10 – 15 = 13.
Ответ. Вере 15 лет, Наде 13 лет, Любе 10 лет.
Решение.
Исходя из свойств правильной пирамиды, каждая из ее сторон является равнобедренным треугольником.
Таким образом, площадь боковой поверхности правильной пирамиды будет равна сумме площадей каждой из граней, являющихся равнобедренными треугольниками.
Площадь равнобедренного треугольника найдем по формуле (Формула 1 из списка):
Формулы нахождения площади равнобедренного треугольника через его стороны и углы, а также через основание и высоту
Подставив значения из условия задачи в Формулу 1, получим:
S = 5 √ ( (13 + 5) (13 - 5) )
S = 5 √ 144 = 60
Поскольку граней у пирамиды четыре, то площадь боковой поверхности будет равна сумме всех четырех граней:
60 * 4 = 240 см2
Правильная четырехугольная пирамида
Так как по условию задачи, пирамида является правильной, то в основании ее лежит правильный многоугольник. Так как, согласно условию, она является четырехугольной, то данным многоугольником является квадрат.
Поскольку основанием пирамиды является квадрат, то:
KN = 10/2 = 5 см
Поскольку каждая грань правильной пирамиды представляет собой равнобедренный треугольник, а в равнобедренном треугольнике медиана, биссектриса и высота, проведенные к третьей стороне совпадают, то
CN = 10/2 = 5
Теперь найдем апофему пирамиды, исходя из свойств прямоугольного треугольника, образованного апофемой пирамиды, ребром и половиной основания (треугольником OCN).
ON2 + CN2 = OC2
ON2 + 25 = 169
ON2 = 144
ON = 12
Откуда уже несложно найти искомую высоту, исходя из свойств прямоугольного треугольника, образованного высотой пирамиды, ее апофемой и отрезком KN (треугольник ONK)
ответ к заданию по русскому языку