Решение.
Способ 1.
K’ = K + I = 4000+44=4044,
где K – капитал или заем, за использование которого заемщик выплачивает определенный процент;
I – процентный платеж или доход, получаемый кредитором от заемщика за пользование денежной ссудой;
P – процентная ставка, показывающая сколько д. е. должен заплатить заемщик за пользование 100 ед. капитала в определенном периоде времени (за год);
D – время, выраженное в днях.
360 – число дней в году.
Способ 2.
Время t = 80/360 = 2/9.
K’ = K + K?i?t = 4000(1 + 0.05?2/9) = 4044,
Где i – процентная ставка, выраженная в долях единицы,
T – время, выраженное в годах.
Решение:
Расчет происходит исходя из того, что в месяце 30 дней, в году 365 или 366 дней. При этом применяются простые проценты, то есть проценты начисляются на одну и ту же сумму в течение всего срока пользования кредитом.
Необходимость определения уровня процентной ставки возникает в тех случаях, когда она в явном виде в условиях финансовой операции не участвует, но степень доходности операции по заданным параметрам можно определить, воспользовавшись следующей формулой:
i = (FV - PV): (PV • n) = [(FV - PV): (PV • t)] • T, где
FV – конечная стоимость кредита = 15000
PV – первоначальная стоимость кредита = 10000
N – количество дней на которое выдается кредит = 180
Т – количество дней в году = 360
Рассчитываем годовую процентную ставку, используя формулу "обыкновенного процента":
i = [(FV - PV): (PV • t)] • T =
= [(15000 - 10000) / (10000 • 180)] * 360 = 0,100
Таким образом, доходность финансовой операции составит 100% годовых, что соответствует весьма высокодоходной финансовой операции.