М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Верны ли утверждения? А) Любой групповой успех распространяется и на каждого члена группы. Поэтому японцы оказываются

👇
Открыть все ответы
Ответ:
ученик1443
ученик1443
04.06.2021
а и b - скрещиваются, а ⊂ α.

По теореме о скрещивающихся прямых (п. 7, теорема вторая), через прямую а можно провести единственную плоскость β || b.

Докажем, что через т. А можно провести плоскость γ, такую что γ || β.

Через точку А провести плоскость, параллельную данной плоскости β не проходящей через т. А.

Проводим в пл. β через некоторую т. В две произвольные прямые BD и ВС. Строим две вспомогательные плоскости: плоскость М - через т. А и прямую ВС и плоскость N - через т. А и прямую BD. Искомая плоскость, параллельная пл. β, должна пересечь пл. М по прямой, параллельной ВС, а плоскость N - по прямой, параллельной BD (п. 11, 1о). Отсюда способ построения пл. γ: через т. А проводим

в пл. М прямую АС1 || BC, а в пл. N прямую AD1 || BD. Через прямые АС1 и AD1 проводим пл. γ. γ - искомая, так как стороны ∠D1AC1, расположенного в пл. γ, параллельны сторонам ∠DBC, расположенного в пл. β. Значит, γ || β.

Так как в пл. М через т. А можно провести лишь одну прямую, параллельную ВС, а в плоскости N через т. А можно провести лишь одну прямую, параллельную BD, то задача имеет единственное решение.

Следовательно, через каждую точку пространства можно провести единственную плоскость, параллельную данной плоскости; γ -единственная плоскость.

Если же окажется, что т. А ∈ β, то это и будет тот случай, когда через т. А и прямую а проходит пл. β, параллельная прямой b.
4,8(45 оценок)
Ответ:

В тетраэдре DABC биссектрисы трех углов при вершин

Чтобы на загромождать рисунок, не показана биссектриса ∠A′DC′. Если для нее повторить рассуждения, то убедимся, что отрезок, исходящий из B′ в точку, где биссектриса пересечет сторону A′C′, будет третьей медианой в ΔA′B′C′. А три медианы треугольнка пересекаются в одной точке.
Таким образом, плоскости DEC′, DFA′ и третья, не показанная на рисунке, пересекаются на рисунке по прямой DO.
Уберем ограничение, что DA′ = DB′ = DC′. Факт, что плоскости пересекаются по прямой DO, останется верным.
Равные отрезки от вершины D можно отложить в любом тетраэдре, поэтому на строгость (или общность) доказательства это повлиять не может.
Раз указанные плоскости пересекаются по прямой DО, то эта прямая пересечется с плоскостью основания в некоторой точке, значит, все три отрезка АА1, СС1 и ВВ1 проходят через нее. Что и требовалось доказать.

4,5(98 оценок)
Это интересно:
Новые ответы от MOGZ: Другие предметы
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ