М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
voznas
voznas
24.05.2020 10:25 •  Другие предметы

Теория цикла, которая объясняет возникновение кризиса недостатком потребительского спроса населения, связывая это с действием основного психологического закона

👇
Ответ:
Правильные ответы к тесту выделены по каждому вопросу
4,8(90 оценок)
Открыть все ответы
Ответ:
ZKRMT
ZKRMT
24.05.2020
BM - медиана треугольника АВС, следовательно, она делит этот треугольник на два равных по площади треугольника ( свойство медианы).
SABM=SCMB=SABC/2
Рассмотрим треугольник ABM.
SABK+SAKM=SABM=SABC/2
AP - биссектриса, по теореме о биссектрисе можно записать AM/AB=KM/BK.
По условию задачи AC/AB=9/7, следовательно, 2AM/AB=9/7 => AM/AB=9/14 => KM/BK=9/14
Т.к. площадь треугольника вычисляется по формуле S=1/2*h*a, где а-основание и h-высота, то можем записать:
SAKM=1/2*h*KM=1/2*h*((9/14)*BK)=9/14*(1/2*h*BK)=9/14*SABK (т.к. высота h для этих треугольников общая)
SABK+SAKM=SABM=SABC/2
SABK+9/14*SABK=SABC/2
23/14*SABK=SABC/2
SABK=14SABC/46
По тому же свойству биссектрисы для треугольника ABC получаем, что AC/AB=CP/PB
AC/AB=9/7 (по условию задачи) => CP/PB=9/7 следовательно, CP=9*PB/7
SAPC=1/2*h*PC=1/2*h*(9*PB/7)=9/7*(1/2*h*PB)=9/7*SABP,
SABP+SAPC=SABC
SABP+9/7*SABP=SABC
16/7*SABP=SABC
SABP=7/16*SABC
Далее найдем площадь треугольника BPK:
SBPK=SABP-SABK
Ранее мы нашли, что SABK=14SABC/23
SBPK=7SABC/16-14SABC/46=322SABC/736-224SABC/736=98SABC/736=49SABC/368
Найдем площадь четырехугольника KPCM:
SKPCM=SCMB-SBKP
SKPCM=SABC/2-49SABC/368, (площадь CMB мы нашли ранее),
SKPCM=184SABC/368-49SABC/368=135SABC/368
Отношение площадей ABK к KPCM =(14SABC/46)/(135SABC/368)=(14*368)/(46*135)=(14*8)/135=112/135
Ответ: отношение площади треугольника ABK к площади четырёхугольника KPCM=112/135.
4,7(39 оценок)
Ответ:
nastalut207
nastalut207
24.05.2020
BM - медиана треугольника АВС, следовательно, она делит этот треугольник на два равных по площади треугольника ( свойство медианы).
SABM=SCMB=SABC/2
Рассмотрим треугольник ABM.
SABK+SAKM=SABM=SABC/2
AP - биссектриса, по теореме о биссектрисе можно записать AM/AB=KM/BK.
По условию задачи AC/AB=6/5.
AM=AC/2 => AC=2AM
Подставляем это значение AC в равенство AC/AB=6/5:
2AM/AB=6/5
AM/AB=6/10=3/5
AM/AB=KM/BK=3/5
KM=3/5*BK
Т.к. площадь треугольника вычисляется по формуле S=1/2*h*a, где а-основание и h-высота, то можем записать:
SAKM=1/2*h*KM=1/2*h*(3/5*BK)=3/5*(1/2*h*BK)=3/5*SABK (т.к. высота h для этих треугольников общая)
SABK=5/3*SAKM
SABK+SAKM=SABM=SABC/2
5/3*SAKM+SAKM=SABC/2
8/3*SAKM=SABC/2
SAKM=3/16*SABC
По тому же свойству биссектрисы для треугольника ABC получаем, что AC/AB=CP/PB
AC/AB=6/5 (по условию задачи), следовательно, CP=6/5*PB
SAPC=1/2*h*CP=1/2*h*(6/5*PB)=6/5*(1/2*h*PB)=6/5*SABP,
SABP+SAPC=SABC
SABP+6/5*SABP=SABC
11/5*SABP=SABC
SABP=5/11*SABC
SKPCM=SABC-SABP-SAKM=SABC-5/11*SABC-3/16*SABC= 176/176*SABC-80/176*SABC-33/176*SABC=63/176*SABC
Отношение SAKM к SKPCM равно (3/16*SABC)/(63/176*SABC)= (3/16)/(63/176)=(3*176)/(16*63)=(3*11)/(63)=11/21
Ответ: 11/21
4,5(56 оценок)
Это интересно:
Новые ответы от MOGZ: Другие предметы
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ