Воспользуемся законом сохранения импульса. до прыжка соломинка и кузнечик находились в покое относительно земли, следовательно, результирующий импульс этой системы равнялся нулю. в соответствии с законом сохранения импульса он не может измениться после прыжка. если скорость соломинки после прыжка равна u, скорость кузнечика задана относительно земли, а угол, который она образует с поверхностью земли, равен , то закон сохранения импульса в проекции на горизонтальное направление дает . (1.3.5) очевидно, что за время полета кузнечика общее перемещение его и соломинки должно равняться длине соломинки l, следовательно, . (1.3.6) чтобы исключить из (1.3.7) время, воспользуемся тем, что время подъема кузнечика до верхней точки траектории равно половине времени полета. так как в верхней точке вертикальная скорость обращается в ноль, находим . (1.3.7) подставляя (1.3.7) в (1.3.6), получаем , что с учетом (1.3.5) дает . таким образом, для скорости кузнечика получаем выражение . очевидно, скорость будет минимальной, если . тогда окончательно .
1. Приступаючи до розв’язання задач з будь-якої теми, спочатку вивчіть
теоретичний матеріал за підручником, розберіться в прикладах розв’язання
типових задач.
2. Уважно прочитайте умову задачі, вникаючи в її зміст. Чітко уявіть
собі фізичне явище, процеси, які відображені умовою задачі.
3. Запишіть коротку умову задачі, вказуючи всі величини з умови
задачі та їх числові значення. Окремо позначте величини, що шукаються в
задачі. Числові значення переведіть в одиниці СІ.
4. Ретельно виконайте креслення, котре пояснює зміст задачі (в тих
випадках, коли це можливо). Є деякі задачі, що розв’язуються графічно, тоді
правильно виконане креслення буде розв’язанням задачі.
5. Згадайте, якому закону підпорядкований фізичний процес і якими
формулами він описується математично. Якщо формул декілька, співставте
величини, що входять у різні формули, із заданими величинами та тими, які
необхідно знайти.
6. На першому етапі розв’язуйте задачу в загальному вигляді, тобто
виводьте формулу, в котрій шукана величина виражена через величини,
задані в умові. Винятки із цього правила вкрай рідкі й бувають у двох
випадках: якщо формула якої-небудь проміжної величини настільки
громіздка, що обчислення цієї величини значно спрощує подальший запис
розв’язання; якщо числовий розв’язок задачі значно простіший, ніж
виведення формули.