Электрический ток в жидкостях
Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом проводить ток.
В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.
Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду через электролит
Электрохимический эквивалент вещества - табличная величина.
Второй закон Фарадея:
Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.
Электрический ток в металлах
При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.
Каждое вещество характеризуется собственным температурным коэффициентом сопротивления - табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.
Явление сверхпроводимости. При температурах близких к абсолютному нулю (-2730C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость - микроскопический квантовый эффект.
Применение электрического тока в металлах
Лампа накаливания производит свет за счет электрического тока, протекающего по нити накала. Материал нити накала имеет высокую температуру плавления (например, вольфрам), так как она разогревается до температуры 2500 – 3250К. Нить помещена в стеклянную колбу с инертным газом.
Электрический ток в газах
Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.
Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.
Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма - наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.
Прохождение электрического тока через газ называется газовым разрядом.
В "рекламной" неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой "живую плазму".
Между электродами сварочного аппарата возникает дуговой разряд.
Дуговой разряд горит в ртутных лампах - очень ярких источниках света.
Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!
Для коронного разряда характерно свечение газа, образуя "корону", окружающую электрод. Коронный разряд - основной источник потерь энергии высоковольтных линий электропередачи.
Электрический ток в вакууме
А возможно ли распространение электрического тока в вакууме (от лат. vacuum - пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С явления термоэлектронной эмиссии - испускания веществом электронов при нагревании.
Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) - приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток - катод, холодный электрод, собирающий термоэлектроны - анод.
Объяснение:
Задача №4
Дано:
x = 0,04·cos(3π·t+π/2)
ν - ?
A - ?
V₀ - ?
a₀ - ?
Циклическая частота:
ω = 2π·ν (1)
Но из уравнения колебаний
ω = 3π (2)
Приравняем (1) и (2)
2π·ν = 3π
ν = 3π / (2π) = 1,5 Гц
A = 0,04 м
V₀ = A·ω = 0,04·3π ≈ 0,38 м/с
a₀ = A·ω² = 0,04·9π² ≈ 3,55 м/с²
Задача 5
Дано:
A = 20 см = 0,20 м
φ₀ = π/2
t = 1 мин = 60 c
n = 120
x(t) - ?
T = t/n = 60/120 = 0,5 с
ω = 2π/T = 4π рад/с
Записываем уравнение колебаний:
x(t) = A·cos(ω·t+φ₀)
x(t) = 0,20·cos(4π·t+π/2)
Задача 6
Дано:
V = 0,9·cos(2π·t+π/6)
ν - ?
ω = 2π
Но
ω = 2π·ν
ν = ω / 2π = 2π/2π = 1 Гц
Задача 7
t = 5 мин = 300 c
n = 300
L - ?
Период
T = t/n = 300/300 = 1 с
Но
T = 2π√ (L/g)
T² = 4π²·L / g
L = g·T² / (4·π²) = 10·1² / (4·3,14)² ≈ 0,25 м
Задача 8
Δt
n₁ = 30
n₂ = 20
L₁ = 80 см
L₂ - ?
T₁ = Δt/n₁
T₂ = Δt/n₂
T₂/T₁ = n₁ / n₂ = 30/20 = 1,5
Но
T₁ = 2π·√(L₁/g)
T₂= 2π·√(L₂/g)
T₂/T₁ = √ (L₂/L₁)
√ (L₂/L₁) = 1,5
L₂/L₁ = 1,5²
L₂ = L₁·2,25
L₂ = 80·2,25 = 180 см