Платина 21500 кг
Золото 19 300 кг
Вольфрам 19000 кг
Свинец 11400 кг
Серебро 10500 кг
Медь 8900 кг
Никель 8800 кг
Латунь 8500 кг
Сталь, железо 7900 кг
Олово 7300 кг
Цинк 7100 кг
Чугун 7000 кг
Алмаз 3500 кг
Алюминий 2700 кг
Мрамор 2700 кг
Гранит 2600 кг
Стекло 2600 кг
Бетон 2200 кг
Графит 2200 кг
Лёд 900 кг
Парафин 900 кг
Дуб (сухой) 700 кг
Берёза (сухая) 650 кг
Пробка 200 кг
Платиноиридиевый сплав 21500 кг
Жидкость
Ртуть 13600 кг
Мёд 1300 кг
Глицерин 1260 кг
Молоко 1036 кг
Морская вода 1030 кг
Вода 1000 кг
Подсолнечное масло 920 кг
Нефть 820 кг
Спирт 800 кг
Бензин 700 кг
Газ
Хлор 3,22 кг
Озон 2,14 кг
Пропан 2,02 кг
Диоксид углерода 1,98 кг
Кислород 1,43 кг
Воздух 1,29 кг
Азот 1,25 кг
Гелий 0,18 кг
Водород 0,09 кг
Объяснение:
В силу симметрии задачи, электростатическое поле является центрально-симметричны. т.е.
r₀ - единичный радиус-вектор от заряда к произвольной исследуемой точке пространства.
Задача и её решение инвариантна к повороту (как картинку "ни крути" вокруг заряда, условие задачи и её решение не изменится).
2. Поле при отсутствии шара
Когда у нас есть только точечный заряд модуль напряженности электростатического поля
Потенциал электростатического поля связан с его напряженностью уравнением:
Интегрирование ведётся по произвольному пути между точками 1 и 2.
Отступление: если домножить уравнение на пробный заряд, то получим определение потенциальной энергии. Правый ингтеграл в этом случае будет работой, совершенной полем над пробным зарядом.
В нашем случае удобно интегрировать вдоль радиальных линий
Замечание: Потенциал определяется всегда с точностью до аддитивной постоянной, поэтому во всех задачах всегда выбирается, так называемое, условие нормировки. В разных задачах оно выбирается по разному, но в задачах данного типа принято брать потенциал бесконечно удаленной точки равным нулю
Подставим в эту формулу найденное поле:
Получили известный результат. Выразим из этого результата заряд Q.
3. Поле при добавлении шара.
Для поиска величины напряженности воспользуемся теоремой Гаусса.
Поток вектора напряженности электростатического поля через любую замкнутую поверхность пропорционален величине свободного заряда, находящегося внутри этой поверхности.
Выберем в качестве такой поверхности сферу радиусом r. В силу структуры поля E(r) = const.
Теперь рассмотрим отдельные участки:
1) Участок 0 < r < 3R
2) Участок 3R<r<4R
E(r) = 0 - электростатического поля внутри идеальных проводников не существует. Если предположить противное, то начнётся движение зарядов и это уже не статика. :)
3) Участок r > 4R
4Q - суммарный заряд внутри сферы радиусом r.
Аналогично рассчитаем потенциал.
Подставляем в это выражение найденное ранее Q и имеем:
Что стоит отметить?
1) Потенциал функция непрерывная. Если знать, что подобные симметричные структуры создают поля аналогичные точечным зарядам, то задача решается в уме.
т.е. мы ищем потенциал на внешней границе шара как потенциал точечного заряда 4Q, на внутренней границе он такой же. Ищем разность потенциалов между внутренней границей и точкой A в поле точечного заряда Q. Складываем результаты.
2) Несмотря на то, что заряд 3Q на шаре поле внутри шара не создаёт, он увеличивает потенциал точек внутри полости, т.к. создаёт дополнительное поле вне шара. Потенциал - это работа по перемещению точечного заряда из бесконечности в данную точку. Больше поле вне шара - больше работа.
3) Разность потенциалов зависит только от локального поля (поля по в окрестности пути, соединяющего две точки). Сам потенциал зависит от структуры всего поля.