№1
1) ZnO+2HNO3 -> Zn(NO3)2+H2O
ZnO + 2H(+) + 2NO3(-) -> Zn(+2) + 2NO3(-) + H2O
ZnO + 2H(+) -> Zn(+2) + H2O
2) 2Al+3H2SO4(разб) -> Al2(SO4)3+3H2
3) не протекает,так как Cu в электрохимическом ряду напряжений металлов после H2
4) 2HCl+FeS -> FeCl2 + H2S
2H(+) + 2Cl(-) + FeS -> Fe(+2) + 2Cl(-) + 2H(+) + S(-2)
FeS -> Fe(+2) + S(-2)
5) 3H2SO4+2Fe(OH)3 -> Fe2(SO4)3+6H2O
6H(+) + 3SO4(-2) + Fe(OH)3 -> 2Fe(+3) + 3SO4(-2) +6H2O
6H(+) Fe(OH)3 -> 2Fe(+3) + 6H2O
№2
Zn + 2HCl = ZnCl2 + H2
n (Zn) = N (Zn) /N A = 12*10^23 / 6*10^23 = 2 моль
n (H2) = n (Zn) = 2 моль
m (H2) = n (H2) * M(H2) = 2 * 2 = 4 г
№3
1)
вопрос:
Какую кислоту используют для осушения?
Крепкая серная кислота поглощает воду, поэтому ее используют для осушения окон, помещая стаканчики с кислотой между рамами.
2)
вопрос:
Какая кислота «дымится» на воздухе?
ответ: олеум. Потому что хлористый водород кондесации воды из воздуха от того возникает этот эффект дыма масимальная концетрация растворения HCl в воде 37.5 % и начиная с 25% растворов все они "дымят"
3)
вопрос:
Что такое купоросное масло?
Так называют в торговле и технике концентрированную серную кислоту
4)
вопрос:
Какая кислота оставляет желтые пятная на коже?
Жёлтые пятна на коже - это результат качественной реакции азотной кислоты на белок.
5)
вопрос:
Какая кислота ядовитая, но не едкая, с запахом «тухлых яиц»?
Сероводород т. к. это очень ядовитый газ с запахом тухлых яиц, хорошо растворим в воде. Так-же есть и серная кислота она тяжелая бесцветная и маслянистая жидкость, не летуча, не имеет запаха, безводная не проводит электрический ток.
6)
вопрос:
Для какой кислоты характерно: твердая, белая, хорошо растворима в воде?
фосфор
№4
1 признак.
кислородсодержащие: HNO3, H2SO4, H3PO4, H2CO3, H2SO3, HClO4; и бескислородные: HCl, H2S.
2 признак.
одноосновные: HCl, HNO3, HClO4. двухосновные: H2S, H2SO4, H2CO3, H2SO3. трехосновная : H3PO4
Смотри - копируй это быстрей подальше от модераторов, потом решай. И в следущий раз - решай по отдельности ;)УДАЧИ!)Твёрдое тело — это агрегатное состояние вещества, характеризующееся стабильностью формы и характером теплового движения атомов, которые совершают малые колебания около положений равновесия.
Газ (газообразное состояние) — агрегатное состояние вещества, характеризующееся очень слабыми связями между составляющими его частицами (молекулами, атомами или ионами), а также их большой подвижностью.грега́тное состоя́ние — состояние вещества, характеризующееся определёнными качественными свойствами или не сохранять объём и форму, наличием или отсутствием дальнего и ближнего порядка и другими. Изменение агрегатного состояния сопровождается скачкообразным изменением свободной энергии, энтропии, плотности и других основных физических свойств.[1]. Агрегатное состояние — результат фазового перехода.
В современной физике выделяют следующие агрегатные состояния: твёрдое тело, жидкость, газ, плазма (ранее им соответствовали 4 стихии (первоэлементы): Земля, Вода, Воздух, Огонь.
Твёрдое и жидкие состояния вещества относятся к конденсированным состояниям — атомы или молекулы вещества в них находятся настолько близко друг к другу, что не свободно двигаться.
Изменение агрегатного состояния — термодинамические процессы, являющиеся фазовыми переходами. Выделяют следующие их разновидности: из твёрдого в жидкое — плавление; из жидкого в газообразное — испарение и кипение; из твёрдого в газообразное — сублимация; из газообразного в жидкое или твёрдое — конденсация. Отличительной особенностью является отсутствие резкой границы перехода к плазменному состоянию.
Понятие агрегатного состояния достаточно условно — существуют аморфные тела, сохраняющие структуру жидкости и обладающие небольшой текучестью; высокоэластичные состояния некоторых полимеров, представляющие нечто среднее между стеклообразным и жидким состоянием, жидкие кристаллы и другие. Также существуют плавные переходы между некоторыми агрегатными состояниями (см. критические явления). С другой стороны стоит отметить наличие нескольких различных состояний твёрдых тел, как например, графит, алмаз и уголь, относящихся к одному агрегатному состоянию (см. аллотропия). Для описания различных состояний в физике чаще используется более широкое понятие фазы.
100м
Объяснение:
M=lF=>l= M\F=100 м