Это равнопеременные движения, их уравнения в общем виде: координаты х(t)= Xo+Vot+at²/2, графики -параболы. Скорости v(t)=Vo+at, графики -линейные. (на фото смотреть при t>0). Перемещение s=x(t)-Xo, график может быть получен смещением графика х(t)
1) для х1 имеем дано: Xo=-6м -начальная координата при t=0, Vo=-8м/с -нач. скорость, ускорение а=+4м/с² (торможение). То есть: тело сначала едет в обратную (против оси 0х) сторону, но с торможением. При t=2c останов (v=0, s=14м -максимум обратного перемещения), далее разгон в прямом направлении (v>0 и а>0). При t=4c х=-6м, т.е. тело вернулось в исходную точку, а в момент t=≈4.646c координата становится х=0 (начало координат); далее ускорение (разгон) продолжается с положительными координатами х>0 и тело уезжает в бесконечность
2) для х2: движение похожее, только в другую сторону. Вначале (t=0) Xo=10м, Vo=+5м/с, т.е. перемещение вдоль/по оси 0х, но тоже с торможением а=-8м/с². При t=0.625c остановка: v=0 х=11.563м максимальное. Далее перемещение в обратную, против 0х, сторону (v<0), с ускорением (и v<0, и а<0 тоже).При t=≈2.325c тело приезжает в начало координат х=0, и продолжает ускоряться с отрицательными координатами х<0
Пояснение: значения t получены решением квадратных уравнений х(t)=0 и линейных v(t)=0. Чтобы параболы хорошо прорисовать, надо взять характерные точки t=0, х=0 и х=экстремум
Решение: Средняя скорость автомобиля равна: Vср.=(S1+S2)/(t1+t2) Расстояние первой части пути, проехавшего автомобиля составляет: S=V*t S1=4v/5*t1=4v*t1/5 Расстояние второй части пути, проехавшего автомобиля составляет: S2=2v*t2 А так как средняя скорость на всём пути равна 2v, составим уравнение: (4v*t1/5+2v*t2)/(t1+t2)=v 4v*t1/5+2v*t2=v*(t1+t2) приведём уравнение к общему знаменателю 5 4v*t1+5*2v*t2=5*v*(t1+t2) v*(4t1+10t2)=v*(5t1+5t2) Разделим левую и правую части уравнения на (v) 4t1+10t2=5t1+5t2 4t1-5t1=5t2-10t2 -t1=-5t2 умножим левую и правую части уравнения на (-1) t1=5t2 Отсюда следует, что соотношение времени равно: t1/t2=1/5
Это равнопеременные движения, их уравнения в общем виде: координаты х(t)= Xo+Vot+at²/2, графики -параболы. Скорости v(t)=Vo+at, графики -линейные. (на фото смотреть при t>0). Перемещение s=x(t)-Xo, график может быть получен смещением графика х(t)
1) для х1 имеем дано: Xo=-6м -начальная координата при t=0, Vo=-8м/с -нач. скорость, ускорение а=+4м/с² (торможение). То есть: тело сначала едет в обратную (против оси 0х) сторону, но с торможением. При t=2c останов (v=0, s=14м -максимум обратного перемещения), далее разгон в прямом направлении (v>0 и а>0). При t=4c х=-6м, т.е. тело вернулось в исходную точку, а в момент t=≈4.646c координата становится х=0 (начало координат); далее ускорение (разгон) продолжается с положительными координатами х>0 и тело уезжает в бесконечность
2) для х2: движение похожее, только в другую сторону. Вначале (t=0) Xo=10м, Vo=+5м/с, т.е. перемещение вдоль/по оси 0х, но тоже с торможением а=-8м/с². При t=0.625c остановка: v=0 х=11.563м максимальное. Далее перемещение в обратную, против 0х, сторону (v<0), с ускорением (и v<0, и а<0 тоже).При t=≈2.325c тело приезжает в начало координат х=0, и продолжает ускоряться с отрицательными координатами х<0
Пояснение: значения t получены решением квадратных уравнений х(t)=0 и линейных v(t)=0. Чтобы параболы хорошо прорисовать, надо взять характерные точки t=0, х=0 и х=экстремум