Сидерический период нашей планеты составляет 365,2564 суток. Следовательно, сидерический период Марса составляет 686,682032 : 365,2564 = 1,88 земных лет.
В земных сутках: 365,2564*1,88 = 686, 682032 земных суток - сидерический год на Марсе.
В земных часах: 365,2564*24 = 8766,15 часов - земной год и 8766,15*1,88 = 16480,37 часов - сидерический год на Марсе.
В земных секундах: 365,2564*24*3600 = 31 558 152,96 секунд - земной год и 31 558 152,96*1,88 = 59 329 327, 5648 земных секунд - сидерический год на Марсе.
Пусть за время Δt на пластину упали N фотонов, общая энергия всех фотонов E = P Δt, энергия каждого фотона (в предположении, что свет монохроматический) e = E/N = P Δt/N. Импульс каждого налетающего фотона равен п = e/c. Посчитаем, какой импульс налетающие фотоны передали пластине.
- Отражённые фотоны (их было RN) передают пластине импульс Δп = 2п
- Поглощённые фотоны (их было (1-R)N) передают платине импульс Δп = п
Суммарно за время Δt пластине будет передан импульс ΔП = RN * 2п + (1-R)N * п = пN * (2R + 1 - R) = (1 + R) пN = (1 + R) (P/c) Δt
Сила F, действующая на пластину, по второму закону Ньютона
F = ΔП / Δt = (1 + R) * P/c
Давление - сила, отнесённая к площади:
p = F/S = (1 + R) * P / cS = 1.6 * 6 / (3*10^8 * 10*10^-4) = 3.2*10^-5 Па = 32 мкПа
ответ. p = 32 мкПа