T-температура после того, как установится тепловое равновесиес1-удельная теплоемкость воды =4200 дж/кг*кс2-удельная теплоемкость льда =2110 дж/кг*кλ- удельная теплота плавления льда=330 кдж/кг*к вода охлаждаетсяq1=c1*m1*(t1-t)=4200*0.200*([273+18]-t) лед нагревается от т2= -20 гр. по цельсию до температуры 0 град с q2=c2*m2*(0-t2)=2110*0.030*(0-[-20])=1266 джлед плавитсяq3=λm2=330000*0.030=9900 джвода из расплавленного льда нагревается q4=c1*m2*(t-0)=4200*0.030*t
1. Импульс момента силы, Mdt, действующий на вращательное тело, равен изменению его момента импульса dL: Mdt = d(Jω) или Mdt = dL Где: Mdt – импульс момента силы (произведение момента силы М на промежуток времени dt) Jdω = d(Jω) – изменение момента импульса тела, Jω = L - момент импульса тела есть произведение момента инерции J на угловую скоростьω ω, а d(Jω) есть dL.
2. Кинематические характеристики Вращение твердого тела, как целого характеризуется углом φ, измеряющегося в угловых градусах или радианах, угловой скоростью ω = dφ/dt (измеряется в рад/с) и угловым ускорением ε = d²φ/dt² (измеряется в рад/с²). При равномерном вращении (T оборотов в секунду), Частота вращения — число оборотов тела в единицу времени: f = 1/T = ω/2 Период вращения — время одного полного оборота. Период вращения T и его частота f связаны соотношением T = 1/f
Линейная скорость точки, находящейся на расстоянии R от оси вращения
Угловая скорость вращения тела ω = f/Dt = 2/T
Динамические характеристики Свойства твердого тела при его вращении описываются моментом инерции твёрдого тела. Эта характеристика входит в дифференциальные уравнения, полученные из уравнений Гамильтона или Лагранжа. Кинетическую энергии вращения можно записать в виде: E=
В этой формуле момент инерции играет роль массы, а угловая скорость роль обычной скорости. Момент инерции выражает геометрическое распределение массы в теле и может быть найден из формулы:
Момент инерции механической системы относительно неподвижной оси a («осевой момент инерции») — физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси: =∑
где: mi — масса i-й точки, ri — расстояние от i-й точки до оси. Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси a подобно тому, как масса тела является мерой его инертности в поступательном движении.
3. Маятник представляет собой замкнутую систему. Если маятник находится в крайней точке, его потенциальная энергия максимальна, а кинетическая равна нулю. Как только маятник начинает двигаться, егопотенциальная энергия уменьшается, а кинетическая - увеличивается. В нижней точке кинетическая энергия максимальна, а потенциальная - минимальна. После этого начинается обратный процесс. Накопленная кинетическая энергия двигает маятник вверх и увеличивает, тем самым потенциальную энергию маятника. Кинетическая энергия уменьшается, пока маятник снова не остановится уже в другой крайней точке. Можно сказать, что в процессе движения маятника происходит переход потенциальной энергии в кинетическую и наоборот.
Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается постоянной. Или так: Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и силами упругости, остается неизменной. (Сумма кинетической и потенциальной энергии тел называется полной механической энергией)
Следовательно ответ: Импульс