Уравнение движения первого тела x1=-v0t+0.5at^2; a=g*sin(b), b- угол наклона плоскости. для второго тела x2=v0t+0.5at^2; Скорость первого тела равна: v1=x1'=-v0+at1; В момент остановки она равна нулю: v0=at1; Отсюда t1=v0/a; Находим расстояния, пройденные телами за это время t1; x1=-v0*v0/a+0.5a*v0^2/a^2; x1=-v0^2/a+0.5v0^2/a; x1=-0.5v0^2/a; (нас интересует отношение расстояний, поэтому берём модуль числа) x1=0.5v0^2/a;
x2=v0*v0/a+0.5a*v0^2/a^2; x2=1.5v0^2/a;
x2/x1=(1.5v0^2/a)/(0.5v0^2/a); x2/x1=3. Второе тело путь в три раза больше, чем первое.
Средняя скорость равна отношению всего пути ко всему затраченному времени, тогда vcp = s/t, (1) где t - время движения равное сумме времен t = t1 + t2 (2) на первой трети пути и на оставшихся двух третях пути: t1 = (1/3)s/v1, а t2 = (2/3)s/v2. (3) после подстановки (3) в (2), а потом в (1), получим vcp = s/((1/3)s/v1 + (2/3)s/v2). после сокращения на s и получим vcp = 3v1v2/(v2 + 2v1). теперь останется выразить искомую скорость на втором участке v2 = 2vcpv1/(3v1 - vcp). после вычислений v2 = 2•20•15/(3•15 - 20) = 24 км/ч. ответ: v2 = 24 км/ч.
для второго тела x2=v0t+0.5at^2;
Скорость первого тела равна: v1=x1'=-v0+at1; В момент остановки она равна нулю: v0=at1; Отсюда t1=v0/a;
Находим расстояния, пройденные телами за это время t1;
x1=-v0*v0/a+0.5a*v0^2/a^2;
x1=-v0^2/a+0.5v0^2/a;
x1=-0.5v0^2/a; (нас интересует отношение расстояний, поэтому берём модуль числа) x1=0.5v0^2/a;
x2=v0*v0/a+0.5a*v0^2/a^2;
x2=1.5v0^2/a;
x2/x1=(1.5v0^2/a)/(0.5v0^2/a);
x2/x1=3. Второе тело путь в три раза больше, чем первое.