Масса ядра меньше то явление называется "Дефект массы" - уменьшение массы атома по сравнению с суммарной массой всех отдельно взятых составляющих его элементарных частиц, обусловленное энергией их связи в атоме.
Если "разобрать" ядро атома на отдельные протоны и нейтроны (например, с ядерной реакции) , то их масса вновь примет именно те значения, которые нам уже известны: 1,00728 а. е. м. для протона и 1,00867 а. е. м. для нейтрона.
Дефект массы является следствием универсального соотношения E = Mc^2, вытекающего из теории относительности А. Эйнштейна, где E - полная энергия системы, c = 3.1010 см/сек - скорость света в пустоте, M - масса системы (в нашем случае - атома) . Тогда DM = DЕ/c2, где DM - дефект массы, а DE - энергия связи нуклонов в ядре, т. е. энергия, которую необходимо затратить для разделения ядра атома на отдельные протоны и нейтроны. Таким образом, чем больше дефект массы, тем больше энергия связывания нуклонов в ядре и тем устойчивее ядро атома элемента. С увеличением числа протонов в ядре (и массового числа) дефект массы сначала возрастает от нуля (для 1H) до максимума (у 64Ni), а затем постепенно убывает для более тяжелых элементов.
Пусть l - длина эскалатора. vш = (1/2)vб скорость шагающего пассажира, равная половине скорости бегущего. v - скорость эскалатора. время поездки на эскалаторе l/v больше времени, когда пассажир шагает l/(v+vш) на 10 секунд: l/v - l/(v+vш) = 10 (1) время поездки на эскалаторе l/v больше времени, когда пассажир бежит со скоростью 2vш на 15 секунд: l/v - l/(v+2vш) = 15 (2) налицо два уравнения, из которых можно получить выражения для v и vш. выражая vш из уравнения (1) получаем: vш = 10v^2/(l - 10v) (3); подставляем выражение (3) теперь в уравнение (2) после муторной получаем выражение для v: v = l/30 (4). подставляя теперь выражение (4) в (3) находим vш = l/60 нам предлагают найти время, за которое l/2 пути пассажир проехал со скоростью эскалатора v, а вторую половину пути l/2 прошел со скоростью vш: t = l/(2v) + l/(2vш) = l*30/(2l) + l*60/(2l) = 15 + 30 = 45 сек.
Если "разобрать" ядро атома на отдельные протоны и нейтроны (например, с ядерной реакции) , то их масса вновь примет именно те значения, которые нам уже известны: 1,00728 а. е. м. для протона и 1,00867 а. е. м. для нейтрона.
Дефект массы является следствием универсального соотношения
E = Mc^2,
вытекающего из теории относительности А. Эйнштейна, где E - полная энергия системы, c = 3.1010 см/сек - скорость света в пустоте, M - масса системы (в нашем случае - атома) . Тогда DM = DЕ/c2, где DM - дефект массы, а DE - энергия связи нуклонов в ядре, т. е. энергия, которую необходимо затратить для разделения ядра атома на отдельные протоны и нейтроны. Таким образом, чем больше дефект массы, тем больше энергия связывания нуклонов в ядре и тем устойчивее ядро атома элемента. С увеличением числа протонов в ядре (и массового числа) дефект массы сначала возрастает от нуля (для 1H) до максимума (у 64Ni), а затем постепенно убывает для более тяжелых элементов.