Объяснение:
Буду считать то что опыты ( по определению массы ) провожу с не упругим материалом заранее зная его плотность
Поставить тело электронные весы и определитить массу
Для начала можно измерить объём шарика как минимум
1) по формуле
V = ¾πR³
( радиус шарика можно измерить штангенциркулем )
затем зная что масса вычисляется по формуле
m = pV
m = p¾πR³
опредеим массу
2) Положить шарик в мензурку ( имеющую деления шкалы ) с водой и измерить изменения объёма воды
Изменение объема воды будет равняться объему шарика .
Затем подвесить шарик на пружину с заранее известной жесткостью ( и определить максимальное удлинение пружины )
Итак как система неподвижна , тогда
Ox : kx - mg = 0
kx = mg
m = ( kx ) / g
По закону сохранения импульса
К примеру между двумя неупругими шарами ( двигающихся в направление друг друга ) происходит абсолютно неупругое центральное соударение
по закону сохранения импульса можем выразить ( массау одного из шаров мы знаем , и скорости их до соударения были равные ( однако m(1) > m(2) ) ( надо определить массу шара m(2) ) и общую скорость после соударения также знаем )
Оx : m(1)v - m(2)v = ( m(1) + m(2) )v'
m(1)v - m(2)v = m(1)v' + m(2)v'
- m(2)v - m(2)v' = m(1)v' - m(1)v
- m(2)( v + v' ) = m(1)( v' - v ) | * ( -1)
m(2)( v + v' ) = - m(1)( v' - v )
m(2) = ( - m(1)( v' - v ) ) / ( v + v' )
так и вычисляем по этой формуле
m(2) = - m(1) ( v' - v ) / ( v + v' )
Итак. Нам требуется найти наибольшее значение силы давления стержня на ось
Основные векторные построения и обозначения представлены на [рисунке 1]
При прокручивании на оси, стержень приобретает угловую скорость
Как легко понять из рисунка:
Теперь найдём ускорение
Теперь, как мы видим, нам необходимо найти угловую скорость. Найдём её из закона сохранения энергии.
Потенциальная энергия, при прокручивании стержня на угол
Элемент, отмеченный на рисунке, как
По закону сохранения энергии, убыль потенциальной энергии должна быть равна кинетической:
Возьмём производную от этого уравнения:
Подставляя выражения [5] и [4] в формулы [2] и [3] получим
Теперь осталась самая главная часть задачи. Поиск максимального значения силы давления оси на стержень
К этому вопросу можно подойти на трёх уровнях сложности и, соответственно – достоверности.
Далее везде в основной неподвижной (лабораторной) системе отсчёта будем считать, что ось Ox направлена направо, а ось Oy направлена вниз, в ту же сторону, что и ускорение.
(продолжение решения на скришотах; формат сайта не позволил выложить более 5000 символов)