В этой теме рассматривается случай, когда силы действуют вдоль оси бруса (осевое растяжение и сжатие). Изучение необходимо начинать с выяснения во о внутренних силовых факторах, действующих в сечениях стержня.
Применение метода сечений позволяет найти величину и направление равнодействующей внутренней (продольной) силы упругости в рассматриваемом сечении. Следует иметь в виду, что в поперечном сечении, перпендикулярном оси стержня, возникают только нормальные напряжения, которые, в силу гипотезы плоских сечений, равномерно распределены в плоскости сечения и определяются по формуле:
,
где N - внутренняя сила, A - площадь поперечного сечения.
Необходимо знать обе формы записи закона Гука, усвоить такие понятия, как модуль упругости при растяжении- сжатии, коэффициент Пуассона. Ознакомиться с методикой испытаний на растяжение, обработки диаграммы растяжения образца из малоуглеродистой стали с её характерными участками. При экспериментальном изучении растяжения и сжатия необходимо усвоить во определения характеристик прочности материала; пределов пропорциональности, упругости, текучести и прочности (временное сопротивление), учесть, что численные их значения условны, так как для их нахождения соответствующие силы делят на первоначальную площадь поперечного сечения испытываемого образца.
v = (v1 + v2)/ (1 + v1*v2/c (кв) ). Вычислим: учитывая что v1 = v2 = v; : v (отн. ) = (v+ v)/ (1 + v*v./с*с) = 2vс ( кв) /(с (кв) + м (кв) ) = 2*0,8с*с/ (с (кв) + 0,64с (кв) ) = 2*0,8/(1 +0,64) = 1,6/ 1,64 = 0,98 с; Это и можно считать ответом v = 0,98c. Ни при каких скоростях относительная скорость не может превышать скорости света с = 3*10(в 8 ст) м/с. ответ можно выразить и в м/с . v = 0,98*3*10(в 8 ст) м/с = 294 000 000 м/с = 294 000 км/с.