М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Milykenon101
Milykenon101
22.03.2023 17:22 •  Физика

Яка кількість виділяється за 10хв у провіднику опором 20 Ом за сили струму 5А

👇
Ответ:
ntaskaeva2
ntaskaeva2
22.03.2023

A=I^2*R*t; A=5^2*20*10*60=300000 Дж= 300 кДж

A=300 кДж

4,4(39 оценок)
Открыть все ответы
Ответ:
marinka02jkjk
marinka02jkjk
22.03.2023
Фа́за колеба́ний полная — аргумент периодической функции, описывающейколебательный или волновой процесс.

Фаза колебаний начальная — значение фазы колебаний (полной) в начальный момент времени, т.е. при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x, y, z) = 0 (для волнового процесса).

Фаза колебания (в электротехнике) — аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению

Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений

Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используются выражения вида

для волны в пространстве любой размерности (например, в трехмерном пространстве)

Фаза колебаний (полная) в этих выражениях — аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная — величина φ0, являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полнаячасто опускают.

Поскольку функции sin(…) и cos(…) совпадают друг с другом при сдвигеаргумента (то есть фазы) на  то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса.

То есть, для колебательного процесса (см. выше) фаза (полная)
для волны в одномерном пространстве
для волны в трехмерном пространстве или пространстве любой другой размерности:

,

где  — угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); t— время;  — начальная фаза (то есть фаза при t = 0); k— волновое число; x — координата точки наблюдения волнового процесса в одномерном пространстве; k — волновой вектор; r — радиус-вектор точки в пространстве (набор координат, например,декартовых).

В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы, градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах, то есть долях периода повторяющегося процесса:

1 цикл = 2 радиан = 360 градусов.

В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.

Иногда (в квазиклассическом приближении, где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические) а также в формализме интеграла по траекториям, где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координатr, в принципе — произвольная функция
4,4(21 оценок)
Ответ:
DemonOfFood
DemonOfFood
22.03.2023

ответ:

в данной статье рассказано о том, как найти среднюю скорость. дано определение этого понятия, а также рассмотрено два важных частных случая нахождения средней скорости. представлен подробный разбор на нахождение средней скорости тела от репетитора по и .

определение средней скорости

средней скоростью движения \upsilon_{cp} тела называется отношение пути s, пройденного телом, ко времени t, в течение которого двигалось тело:

  \[ \upsilon_{cp} = \frac{s}{t}. \]

научимся ее находить на примере следующей :

тело двигалось 3 мин. со скоростью 5 м/с, после чего 7 мин. двигалось со скоростью 3 м/с. найти среднюю скорость движения тела.

переведем все величины в международную систему единиц си. в этой системе единицей измерения времени является секунда. следовательно, тело двигалось на первом участке пути в течение t_1 = 3\cdot 60 = 180 с, а на втором участке пути в течение t_2 = 7\cdot 60 = 420 с.

найдем теперь полный путь, пройденный телом. на первом участке тело прошло s_1 =\upsilon_1 t_1 = 900 м пути. на втором участке пути тело прошло s_2 = \upsilon_2 t_2 = 1260 м пути. следовательно, общий пройденный телом путь составляет s = s_1 + s_2 = 2160 м.

общее время движения составляет t = t_1+t_2 = 600 с. следовательно, средняя скорость движения тела составляет:

\upsilon_{cp} = \frac{s}{t} = 3.6 м/с.

обратите внимание, что в данном случае это значение не совпало со средним арифметическим скоростей \upsilon_1 и \upsilon_2, которое равно:

\frac{\upsilon_1+\upsilon_1}{2} = 4 м/с.

частные случаи нахождения средней скорости

1. два одинаковых участка пути. пусть первую половину пути тело двигалось со скоростью \upsilon_1, а вторую половину пути — со скоростью \upsilon_2. требуется найти среднюю скорость движения тела.

пусть s — общая длина пройденного пути. тогда на первом участке пути тело двигалось в течение интервала времени t_1 = \frac{s}{2\upsilon_1}. аналогично, на втором участке пути тело двигалось в течение интервала времени t_2 = \frac{s}{2\upsilon_2}.

тогда средняя скорость движения равна:

  \[ \upsilon_{cp} = \frac{s}{t_1+t_2} = \frac{s}{\frac{s}{2\upsilon_1}+\frac{s}{2\upsilon_2}} = \frac{2\upsilon_1\upsilon_2}{\upsilon_1+\upsilon_2}. \]

2. два одинаковых интервала движения. пусть тело двигалось со скоростью \upsilon_1 в течение некоторого промежутка времени, а затем стало двигаться со скоростью \upsilon_2 в течение такого же промежутка времени. требуется найти среднюю скорость движения тела.

пусть t — общее время пути. тогда путь, пройденный телом в течение первой половины времени движения, равен: s_1 = \upsilon_1\frac{t}{2}. аналогично, путь, пройденный телом в течение второй половины времени движения, равен: s_2 = \upsilon_2\frac{t}{2}.

тогда средняя скорость движения равна:

  \[ \upsilon_{cp} = \frac{s_1+s_2}{t} = \frac{\upsilon_1\frac{t}{2}+\upsilon_2\frac{t}{2}}{t} = \frac{\upsilon_1+\upsilon_2}{2}. \]

здесь мы получили единственный случай, когда средняя скорость движения совпала со средним арифметическим скоростей \upsilon_1 и \upsilon_2 на двух участках пути.

решим напоследок из всероссийской олимпиады школьников по , прошедшей в прошлом году, которая связана с темой нашего сегодняшнего занятия.

тело двигалось t = 20 с, и средняя скорость движения \upsilon_{cp} составила 4 м/с. известно, что за последние t_2 = 4 с движения средняя скорость этого же тела \upsilon_{cp2} составила 10 м/с. определите среднюю скорость тела \upsilon_{cp1} за первые t_1 = 16 с движения.

пройденный телом путь составляет: s = \upsilon_{cp}t = 80 м. можно найти также путь, который прошло тело за последние t_2 = 4 с своего движения: s_2 = \upsilon_{cp2}t_2 = 40 м. тогда за первые t_1 = 16 с своего движения тело преодолело путь в s_1 = s-s_2 = 40 м. следовательно, средняя скорость на этом участке пути составила:

\upsilon_{cp1} = \frac{s_1}{t_1} = 2.5 м/с.

объяснение:

4,6(98 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ