Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
Вес зависит от механического состояния тела.Если бумага неподвижна относительно стакана с водой ,то вес по значению и направлению совпадает с силой тяготения .Для этого случая можно написать,что P=Fтяг.;P=gm. Во всех случаях сила тяготения приложена к стакану,а вес к бумаге.Если мы медленно потянем за лист бумаги,за ним потянется и стакан. Если же мы потянем за бумагу чуть быстрее стакан потянется вместе с листом бумаги,но его скорость тоже будет быстрее.Есть небольшая вероятность того ,что стакан перевернется. В третьем случае ,потянув за стакан еще быстрее мы наблюдаем такую картину:стакан остался на месте. Вывод:стакан взаимодействует с листом бумаги и с поверхностью(на которой стоит стакан и лежит бумага)Если сила тяготения приложена к данному телу ,то вес приложен к опоре.
Среднюю скорость катера можно сосчитать по формуле:
\[{\upsilon _{ср}} = \frac{{{S_1} + {S_2}}}{{{t_1} + {t_2}}}\]
Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
\[\left\{ \begin{gathered}
{t_1} = \frac{S}{{2{\upsilon _1}}} = \frac{S}{{4{\upsilon _2}}} \hfill \\
{t_2} = \frac{S}{{2{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Подставим выражения для времен \(t_1\) и \(t_2\) в формулу средней скорости.
\[{\upsilon _{ср}} = \frac{S}{{\frac{S}{{4{\upsilon _2}}} + \frac{S}{{2{\upsilon _2 = \frac{S}{{\frac{{3S}}{{4{\upsilon _2 = \frac{{S \cdot 4{\upsilon _2}}}{{3S}} = \frac{{4{\upsilon _2}}}{3}\]
Значит необходимая нам скорость \(\upsilon_2\) определяется по такой формуле.