В сопротивлении материалов принято рассчитывать деформации в относительных единицах:
Между продольной и поперечной деформациями существует зависимость
где μ— коэффициент поперечной деформации, или коэффициент Пуассона, —характеристика пластичности материала.
Закон Гука
В пределах упругих деформаций деформации прямо пропорциональны нагрузке:
где F — действующая нагрузка; к — коэффициент. В современной форме:
Получим зависимость
где Е — модуль упругости, характеризует жесткость материала.
В пределах упругости нормальные напряжения пропорциональны относительному удлинению.
Значение Е для сталей в пределах (2 – 2,1) • 105МПа. При прочих равных условиях, чем жестче материал, тем меньше он деформируется:
Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
Используем известные формулы.
Относительное удлинение
В результате получим зависимость между нагрузкой, размерами бруса и возникающей деформацией:
где
Δl — абсолютное удлинение, мм;
σ — нормальное напряжение, МПа;
l — начальная длина, мм;
Е — модуль упругости материала, МПа;
N — продольная сила, Н;
А — площадь поперечного сечения, мм2;
Произведение АЕ называют жесткостью сечения
Запишем формулу кинетической энергии в малекулярной физике . Нам неизвестна температура, её мы выражаем из уравнения Менделеева-Клайперона ⇒ из данной формулы выражаем температуру ⇒ подставив данную формулу в формулу кинетической энергии
R - универсальная газовая постоянная = 8,31 Дж/моль*К.
k - постоянная Больцмана = 1,38*10⁻²³ Дж/К.
V - объём = 1 м³.
p - давление = 1,5*10⁵ Па.
N - число малекул = 2*10²⁵.
Na - число авагадро = 6*10²³ моль₋₁
Подставляем численные данные и вычисляем ⇒
Джоуль.
ответ: Дж.