М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
слав4552
слав4552
12.02.2021 09:16 •  Физика

1) Какая часть начального количества ядер стронция 90 38 Sr распадается через 14 лет. Период полураспада стронция 28 лет. 2) Найти длину волны де Бройля для протона разность потенциалов 200 В. Масса протона mр = 1,67 ∙ 10-27кг.

👇
Открыть все ответы
Ответ:
Urinasonya
Urinasonya
12.02.2021

Ну, для начала, если вытянуть руку, держа при этом попрыгунчик, то потенциальная энергия порыгунчика будет на максимуме. При падении потенциальная энергия будет уменьшаться, а кинетическия увеличиваться(пропорцианально друг другу).

При столкновении с плоской поверхностью попрыгунчик отскочит благодоря набранной при полете силы ускорения(g= 9.8 м\c^{2}) и силе упругости каучука(резина). Так же, если кинуть мячик под углом, то он отскочит прямо пропорционально этому углу(угол падения = углу отражения).

Ну вот, "пища" для размышления есть, как бы образец :)
Удачи.

4,6(45 оценок)
Ответ:
Ерс01
Ерс01
12.02.2021

Формула бинома Ньютона является частным случаем разложения функции {\displaystyle (1+x)^{r}} (1+x)^r в ряд Тейлора:

{\displaystyle (1+x)^{r}=\sum _{k=0}^{\infty }{r \choose k}x^{k}} (1+x)^r=\sum_{k=0}^{\infty} {r \choose k} x^k,

где r может быть комплексным числом (в частности, отрицательным или вещественным). Коэффициенты этого разложения находятся по формуле:

{\displaystyle {r \choose k}={1 \over k!}\prod _{n=0}^{k-1}(r-n)={\frac {r(r-1)(r-2)\cdots (r-(k-1))}{k!}}} {\displaystyle {r \choose k}={1 \over k!}\prod _{n=0}^{k-1}(r-n)={\frac {r(r-1)(r-2)\cdots (r-(k-1))}{k!}}}

При этом ряд

{\displaystyle (1+z)^{\alpha }=1+\alpha {}z+{\frac {\alpha (\alpha -1)}{2}}z^{2}+...+{\frac {\alpha (\alpha -1)\cdots (\alpha -n+1)}{n!}}z^{n}+...} (1+z)^\alpha=1+\alpha{}z+\frac{\alpha(\alpha-1)}{2}z^2+...+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}z^n+

сходится при {\displaystyle |z|\leq 1} |z|\le 1.

В частности, при {\displaystyle z={\frac {1}{m}}} z=\frac{1}{m} и {\displaystyle \alpha =x\cdot m} \alpha=x\cdot m получается тождество

{\displaystyle \left(1+{\frac {1}{m}}\right)^{xm}=1+x+{\frac {xm(xm-1)}{2\;m^{2}}}+...+{\frac {xm(xm-1)\cdots (xm-n+1)}{n!\;m^{n}}}+\dots .} \left(1+\frac{1}{m}\right)^{xm}=1+x+\frac{xm(xm-1)}{2\; m^2}+...+\frac{xm(xm-1)\cdots(xm-n+1)}{n!\; m^n}+\dots.

Переходя к пределу при {\displaystyle m\to \infty } m\to\infty и используя второй замечательный предел {\displaystyle \lim _{m\to \infty }{\left(1+{\frac {1}{m}}\right)^{m}}=e} \lim_{m\to\infty}{\left(1+\frac{1}{m}\right)^{m}}=e, выводим тождество

{\displaystyle e^{x}=1+x+{\frac {x^{2}}{2}}+\dots +{\frac {x^{n}}{n!}}+\dots ,} e^x=1+x+\frac{x^2}{2}+\dots+\frac{x^n}{n!}+\dots,

которое именно таким образом было впервые получено Эйлером.

4,7(56 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ