1)Eo = mgh = 800*9,8*27 = 211680 Дж.
2)E' = 211680 + 245000 = 456680 Дж.
3)h' = E'/mg = 456680/800*9,8 = 456680/7840 ≈ 58 м. вот так
ответ:h'=58м.
v1/v2 = корень из ( (R + h2) / (R + h1) )
T1/T2 = ( (R + h1) / (R + h2) )^(3/2)
Объяснение:
дано:
h1
h2
R
найти:
v1/v2
T1/T2
скорость движения спутника по орбите на высоте h:
v = корень из ( G×M / (R + h) )
G - гравитационная постоянная,
M - масса Земли
v1/v2 = (корень из ( G×M / (R + h1) ) ) / ( корень из ( G×M / (R + h2) ) ) = корень из ( ( (G×M) × (R + h2) ) / ( (G×M) × (R + h1) ) ) = корень из ( (R + h2) / (R + h1) )
период обращения T:
T = 2 × pi × (R + h) / v
T1/T2 = (2 × pi × (R + h1) / v1) / ((2 × pi × (R + h2) / v2) = ( (R + h1) / (R + h2) ) × (v2/v1) = ( (R + h1) / (R + h2) ) × ( корень из ( (R + h1) / (R + h2) ) ) = ( (R + h1) / (R + h2) )^(3/2)
Найдем формулу, связывающую амплитудное значение тока в контуре с амплитудным значением напряжения. Как известно напряжение в контуре
U(t)=q(t)C=>qmax=Umax∗C(1) В тоже время I(t)=dqdt=q′(t). Величина заряда меняется по гармоническому закону q(t)=qmaxcos(ωt)=>I(t)=q′(t)=−qmax∗ωsin(ωt), таким образом мы получили, что Imax=−qmaxω(2) подставляем (1) в (2) Imax=−UmaxCωОсталось найти циклическую частоту ω=2πT, в то же время период равен по формуле Томсона T=2πLC−−−√, подставляем в (2)Imax=−Umax∗C2πT=−Umax∗C2π2πLC−−−√==−Umax∗CLC−−−√=−UmaxCL−−√Подставляем данные задачи Imax=−500В400∗10−12Ф10∗10−3Гн−−−−−−−−−−−√=−0,1А
Объяснение:
dEp=m*g*(h2-h1) h2=(dEp/m)+h1=(245*10^3/0,8*9,8)+21=52 м