М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
arturk13
arturk13
26.05.2020 06:48 •  Физика

действие одного тела на другое не может быть .Если первое тело действует на второе, то и второе действует на .В результате взаимодействия оба тела могут изменить форму или . Мерой воздействия оба тела могут изменить свою форму или.Мерой воздействия одного тела на другое является .Сила величина.На чертеже силу изображают в виде отрезка прямой со стрелкой на конце, при этом:начало отрезка есть точка сила, направление стрелки указывает силы,длина отрезка условно обозначает в некотором масштабе силы, рядом со стрелкой пишется обозначает .​

👇
Ответ:
Darima111
Darima111
26.05.2020

ействие одного тела на другое не может быть односторонним.

Если первое тело действует на второе, то и второе действует на первое.

В результате взаимодействия оба тела могут изменить форму или скорость.

Мерой воздействия оба тела могут изменить свою форму или скорость.

Мерой воздействия одного тела на другое является силой. Сила векторная величина.

На чертеже силу изображают в виде отрезка прямой со стрелкой на конце, при этом:начало отрезка есть точка приложения силы.

направление стрелки указывает направление силы.

длина отрезка условно обозначает в некотором масштабе модуль силы

рядом со стрелкой пишется обозначает вектор  F

Объяснение:

4,4(11 оценок)
Открыть все ответы
Ответ:
helpstupedgirl
helpstupedgirl
26.05.2020
ПЕРВЫЙ

Рассмотрим обычную гуковскую пружину длины    L \ ,    и жёсткостью    k \ ,    деформацию которой обозначим, как    l \ .    Тогда возникающая сила упругости при её деформации будет выражаться обычным законом Гука:

F = -kl \ ;

Рассмотрим некоторое состояние [1] :    F_1 = -kl_1
и некоторое состояние [2] :    F_2 = -kl_2

При вычитании этих уравнений получим, что для двух любых состояний верно, что:

F_2 - F_1 = -k ( l_2 - l_1 ) \ ;

\Delta F = -k \Delta l \ ;

Т.е. изменение силы действующей со стороны любой гуковской пружины пропорционально изменению её деформации с противоположным знаком, через её собственную жёсткость.

В нашем случае, в состоянии равновесия    z = 0    – все силы, действующие на груз, взаимно скомпенсированы. При изменении положения груза на    z 0 \ ,    (т.е. вверх), растяжение нижней пружины (down) увеличится, а значит её сила, действующая на груз вниз – тоже увеличится по модулю. В проективном виде это изменение выразится, как:

\Delta F_d = - k_d z < 0    – это символизирует увеличение отрицательной (направленной вниз) величины силы нижней пружины.

В то же время, при изменении положения груза на    z 0 \ ,    (вверх), растяжение верхней пружины (up) уменьшится, а значит её сила, действующая на груз вверх – тоже уменьшится по модулю. В проективном виде это изменение выразится, как:

\Delta F_u = - k_u z < 0    – это символизирует уменьшение  положительной (направленной вверх) величины силы верхней пружины.

Общее изменение силы составит (сила тяжести не изменится):

\Delta F = \Delta F_d + \Delta F_u = - ( k_d + k_u ) z \ ;

При этом, поскольку в начальном состоянии действие всех сил было скомпенсировано, т.е. равнодействующая была равна нулю, то, стало быть, при смещении груза на    z \ ,    общая сила, действующая со стороны системы пружин – будет как раз и равна изменению действующих сил:

F = - ( k_d + k_u ) z \ ;
(рассуждения для отрицательного смещения производятся аналогично)

А такая зависимость силы от смещения – эквивалентна системе груза и одной пружины с жёсткостью, равной сумме исходных жёсткостей. Стало быть:

T = 2 \pi \sqrt{ \frac{m}{ k_d + k_u } } \ ,    где    m    –  масса шарика.

\nu = \frac{1}{2 \pi} \sqrt{ \frac{ k_d + k_u }{m} } \ .

ВТОРОЙ

Пусть начальные растяжения пружин:    l_d   (нижней), и    l_u   (верхней). При этом положим вертикальное положение груза    z = 0 \ .    Ось    Oz    направлена вверх.

Запишем закон сохранения энергии для произвольного положения груза:

\frac{mv^2}{2} + mgz + \frac{k_d}{2} ( l_d + z )^2 + \frac{k_u}{2} ( l_u - z )^2 = const \ ;

Продифференцируем уравнение по времени:

mvv'_t + mgz'_t + k_d ( l_d + z ) z'_t - k_u ( l_u - z ) z'_t = 0 \ ; \ \ \ \ || : z'_t

mv'_t + mg + k_d ( z + l_d ) + k_u ( z - l_u ) = 0 \ ;

mz''_t = k_u l_u - k_d l_d - mg -( k_d + k_u )z \ ;

Заметим, что в начальном положении, действие всех сил скомпенсировано:

k_u l_u - k_d l_d - mg = 0 \ ;
(сила только верхней пружины положительна, т.к. направлена вверх)

Итак:

mz''_t = -( k_d + k_u )z \ ;

А такая зависимость силы от смещения – эквивалентна системе груза и одной пружины с жёсткостью, равной сумме исходных жёсткостей. Стало быть:

T = 2 \pi \sqrt{ \frac{m}{ k_d + k_u } } \ ,    где    m    –  масса шарика.

\nu = \frac{1}{2 \pi} \sqrt{ \frac{ k_d + k_u }{m} } \ .

ТРЕТИЙ

Зафиксируем груз. Демонтируем нижнюю пружину. Прикрепим нижнюю пружину тоже свреху (!) груза, закрепив её на таком вертикальном расстоянии от груза, чтобы при отпускании груза – он остался бы в равновесии.

Сборка окажется эквивалентной, поскольку изначально верхняя пружина будет работать, как прежде. А перемещённая пружина при поднятии груза будет толкать груз вниз с таким же коэффициентом упругости, с которым она тянула бы его вниз, будучи снизу. С противоположным смещением – то же самое.

Обе пружины при такой эквивалентной сборке будут работать в параллельном режиме, как хорошо известно, с суммарной жёсткостью:

Итак:

F = -( k_d + k_u )z \ ;

T = 2 \pi \sqrt{ \frac{m}{ k_d + k_u } } \ ,    где    m    –  масса шарика.

\nu = \frac{1}{2 \pi} \sqrt{ \frac{ k_d + k_u }{m} } \ .

ЧИСЛЕННЫЙ РАСЧЁТ :::

1   Н/см   = 100   Н   : 100   см   = 100   Н   : 1   м   = 100   Н/м ;

3   Н/см   = 300   Н   : 100   см   = 300   Н   : 1   м   = 300   Н/м ;

Допустим, масса шарика равна 1 кг. Тогда:

T = 2 \pi \sqrt{ \frac{m}{ k_d + k_u } } \approx 2 \pi \sqrt{ \frac{1}{ 300 + 100 } } \approx 0.314   сек ;

\nu = \frac{1}{2 \pi} \sqrt{ \frac{ k_d + k_u }{m} } \approx \frac{1}{2 \pi} \sqrt{ \frac{ 300 + 100 }{1} } \approx 3.18    Гц .
4,6(86 оценок)
Ответ:
honeydrink34324
honeydrink34324
26.05.2020
ПЕРВЫЙ

Рассмотрим обычную гуковскую пружину длины    L \ ,    и жёсткостью    k \ ,    деформацию которой обозначим, как    l \ .    Тогда возникающая сила упругости при её деформации будет выражаться обычным законом Гука:

F = -kl \ ;

Рассмотрим некоторое состояние [1] :    F_1 = -kl_1
и некоторое состояние [2] :    F_2 = -kl_2

При вычитании этих уравнений получим, что для двух любых состояний верно, что:

F_2 - F_1 = -k ( l_2 - l_1 ) \ ;

\Delta F = -k \Delta l \ ;

Т.е. изменение силы действующей со стороны любой гуковской пружины пропорционально изменению её деформации с противоположным знаком, через её собственную жёсткость.

В нашем случае, в состоянии равновесия    z = 0    – все силы, действующие на груз, взаимно скомпенсированы. При изменении положения груза на    z 0 \ ,    (т.е. вверх), растяжение нижней пружины (down) увеличится, а значит её сила, действующая на груз вниз – тоже увеличится по модулю. В проективном виде это изменение выразится, как:

\Delta F_d = - k_d z < 0    – это символизирует увеличение отрицательной (направленной вниз) величины силы нижней пружины.

В то же время, при изменении положения груза на    z 0 \ ,    (вверх), растяжение верхней пружины (up) уменьшится, а значит её сила, действующая на груз вверх – тоже уменьшится по модулю. В проективном виде это изменение выразится, как:

\Delta F_u = - k_u z < 0    – это символизирует уменьшение  положительной (направленной вверх) величины силы верхней пружины.

Общее изменение силы составит (сила тяжести не изменится):

\Delta F = \Delta F_d + \Delta F_u = - ( k_d + k_u ) z \ ;

При этом, поскольку в начальном состоянии действие всех сил было скомпенсировано, т.е. равнодействующая была равна нулю, то, стало быть, при смещении груза на    z \ ,    общая сила, действующая со стороны системы пружин – будет как раз и равна изменению действующих сил:

F = - ( k_d + k_u ) z \ ;
(рассуждения для отрицательного смещения производятся аналогично)

А такая зависимость силы от смещения – эквивалентна системе груза и одной пружины с жёсткостью, равной сумме исходных жёсткостей. Стало быть:

T = 2 \pi \sqrt{ \frac{m}{ k_d + k_u } } \ ,    где    m    –  масса шарика.

\nu = \frac{1}{2 \pi} \sqrt{ \frac{ k_d + k_u }{m} } \ .

ВТОРОЙ

Пусть начальные растяжения пружин:    l_d   (нижней), и    l_u   (верхней). При этом положим вертикальное положение груза    z = 0 \ .    Ось    Oz    направлена вверх.

Запишем закон сохранения энергии для произвольного положения груза:

\frac{mv^2}{2} + mgz + \frac{k_d}{2} ( l_d + z )^2 + \frac{k_u}{2} ( l_u - z )^2 = const \ ;

Продифференцируем уравнение по времени:

mvv'_t + mgz'_t + k_d ( l_d + z ) z'_t - k_u ( l_u - z ) z'_t = 0 \ ; \ \ \ \ || : z'_t

mv'_t + mg + k_d ( z + l_d ) + k_u ( z - l_u ) = 0 \ ;

mz''_t = k_u l_u - k_d l_d - mg -( k_d + k_u )z \ ;

Заметим, что в начальном положении, действие всех сил скомпенсировано:

k_u l_u - k_d l_d - mg = 0 \ ;
(сила только верхней пружины положительна, т.к. направлена вверх)

Итак:

mz''_t = -( k_d + k_u )z \ ;

А такая зависимость силы от смещения – эквивалентна системе груза и одной пружины с жёсткостью, равной сумме исходных жёсткостей. Стало быть:

T = 2 \pi \sqrt{ \frac{m}{ k_d + k_u } } \ ,    где    m    –  масса шарика.

\nu = \frac{1}{2 \pi} \sqrt{ \frac{ k_d + k_u }{m} } \ .

ТРЕТИЙ

Зафиксируем груз. Демонтируем нижнюю пружину. Прикрепим нижнюю пружину тоже свреху (!) груза, закрепив её на таком вертикальном расстоянии от груза, чтобы при отпускании груза – он остался бы в равновесии.

Сборка окажется эквивалентной, поскольку изначально верхняя пружина будет работать, как прежде. А перемещённая пружина при поднятии груза будет толкать груз вниз с таким же коэффициентом упругости, с которым она тянула бы его вниз, будучи снизу. С противоположным смещением – то же самое.

Обе пружины при такой эквивалентной сборке будут работать в параллельном режиме, как хорошо известно, с суммарной жёсткостью:

Итак:

F = -( k_d + k_u )z \ ;

T = 2 \pi \sqrt{ \frac{m}{ k_d + k_u } } \ ,    где    m    –  масса шарика.

\nu = \frac{1}{2 \pi} \sqrt{ \frac{ k_d + k_u }{m} } \ .

ЧИСЛЕННЫЙ РАСЧЁТ :::

1   Н/см   = 100   Н   : 100   см   = 100   Н   : 1   м   = 100   Н/м ;

3   Н/см   = 300   Н   : 100   см   = 300   Н   : 1   м   = 300   Н/м ;

Допустим, масса шарика равна 1 кг. Тогда:

T = 2 \pi \sqrt{ \frac{m}{ k_d + k_u } } \approx 2 \pi \sqrt{ \frac{1}{ 300 + 100 } } \approx 0.314   сек ;

\nu = \frac{1}{2 \pi} \sqrt{ \frac{ k_d + k_u }{m} } \approx \frac{1}{2 \pi} \sqrt{ \frac{ 300 + 100 }{1} } \approx 3.18    Гц .
4,8(98 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ