Вырезай что не не нужно Паровая машина была изобретена в XVIII веке, когда основной недостаток гидросиловых установок (зависимость от местных условий) , мало сказывавшийся при вращении жерновов зерновых мельниц, стал сильно препятствовать развитию металлургических предприятий, главным образом из-за невозможности применить водяные колёса для откачивания воды из рудников, удалённых от источников водной энергии. Возможность перевозки топлива сделала тепловой двигатель независимым от месторасположения источника энергии и позволила решать задачу рудничного водоотлива, в результате чего на рудниках появились теплосиловые установки. Решая задачу водоподъёма, изобретатели (Д. Папен во Франции, Т. Ньюкомен и Т. Севери в Англии и др. ) постепенно нашли конструктивные формы для осуществления непрерывного рабочего процесса паровой машины: отдельный паровой котёл, цилиндр, топочное устройство, краны и др. Однако это всё ещё были насосные установки, которые могли направлять работу цикла только на подъём воды и были не в состоянии удовлетворить потребности в двигателях для заводских машин (воздуходувных мехов, рудодробильных пестов, кузнечных молотов, лесопильных рам и др.) . Так возник переходный период (1700—1780) в энергетике, когда водяное колесо стало ограничивать развитие техники вследствие зависимости от местонахождения источника водной энергии; паровой двигатель, хотя и был свободен от местных условий, был освоен только для подъёма воды. Потребности заводов привели к созданию комбинированных установок, в которых паровой насос поднимал воду на водяное колесо, приводившее в движение заводские машины. Такие установки не решали задачи о заводском двигателе, так как теряли в своей гидравлической части свыше 2/3 работы, получаемой от парового цикла. Задача могла быть решена только путём замены гидравлической передачи работы механической, изысканием передаточного механизма периодически отдаваемую паровым циклом работу передавать потребителю непрерывно, в любой необходимой форме движения. Простейший передаточный механизм в форме балансира просуществовал целое столетие, так как позволил при низком давлении пара поднимать воду на большую высоту за счёт разности площадей сечения парового и водяных цилиндров, но не решал главной задачи заводского двигателя отдавать работу непрерывно. Применение двух цилиндров с последовательной отдачей работы их полостей на общий вал было впервые предложено И. И. Ползуновым в 1763, однако из-за смерти изобретателя проект не был завершён, и машина была разобрана после нескольких пробных пусков. В 80-х гг. XVIII века потребность в универсальном двигателе стала исключительно острой в связи с развитием первого этапа промышленного переворота — внедрением в производство прядильных и ткацких машин. Эти новые машины, дававшие возможность одновременного действия многих орудий, определили в последней четверти 18 в. период завершения первого этапа в развитии паровых машин. Задача приняла конкретную форму: необходимо было превратить паровую насосную установку в двигатель с вращательным движением вала. Решение этой задачи нашло своё отражение в патентах разных стран на паровые машины в 80-х гг. XVIII в. Наибольшее распространение получила паровая машина Джеймса Уатта, (Англия) , как наиболее экономичная вследствие отделения конденсатора от цилиндра. С 1800 развитие паровой машины и её внедрение в промышленности и на транспорте идёт возрастающими темпами. К середине XIX века суммарная мощность паровозов превосходит мощность фабричных установок. Во 2-й половине XIX века мощность судовых установок также становится выше мощности стационарных, а к концу века становится наибольшей составляющей в общем балансе установленной мощности, достигшей 120 млн. л. с.
Вроде бы задача представляется проще, чем я сначала подумал. Итак, начинаем рассуждать логически. Будем считать, что H > h. ответ не изменится если будет наоборот - просто можем развернуть дом, или делать бросок с обратной сторон дома. Поэтому такое допущение упростит нам выкладки, но для решения не имеет значения.
Какую вертикальную скорость Vy должен иметь мяч? Не вижу иного варианта ответа на этот вопрос, как такую, чтобы мог взлететь на высоту Н. Этого будет достаточно, более высоко подлетать не требуется. Таким образом, используя стандартную формулу, получим что Vy = корень ( 2 * g * H ).
Далее мяч перелетел через высокую стену дома, и начинает снижаться. Тут зададимся вопросом сколько времени t займёт снижение с высоты Н до высоты h. Опять используем стандартную формулу для равноускоренного движения, и получим H - h = g * t^2 / 2, отсюда t = корень ( 2 * (H-h) / g ).
За это время t мяч должен успеть пролететь расстояние L, чтобы не зацепить на угол крыши. Следовательно, он должен иметь горизонтальную скорость Vx = L / t Vx = L / корень ( 2 * (H-h) / g ).
Внезапно мы получили вертикальную и горизонтальную составляющие скорости. Для ответа на вопрос их нужно просто векторно сложить, т.е. в нашем случае применить теорему Пифагора.
V^2 = Vy^2 + Vy^2 V^2 = 2 * g * H + L^2 * g / (2*(H-h))
По ходу, корень из этого выражения и является ответом на вопрос. Можно для красоты вынести за скобку g, и выходит так: V = корень ( g * ( 2H + L^2 / (2*(H-h
В общем, такая моя версия. Сходится с ответом?
По ходу, легко определяется также и угол броска как а = arctg ( Vy / Vx ).
Расстояние точки броска от стены в такой схеме (т.е. при условии что H > h ) выразится тоже несложно, как S = Vx * Vy / g
Энергия тела x = 7+8t, t=R