Пароход, двигаясь против течения со скоростью 16 км/ч, проходит расстояние между двумя пристанями за 3 ч. За какое время он пройдёт то же расстояние по течению, если скорость парохода по течению равна 5,9 м/с? (Результат округляй до десятых!)
и через 1 секунду после начала движения скорость тела будет:
v = 1 + 0,5 · 1 = 1,5 (м/с)
А вот с пройденным расстоянием не все так просто. Дело в том, что скорость тела возрастает не дискретно и моментально при прохождении одной секунды, а линейно и поступательно. Это означает, что скорость тела внутри любого промежутка времени не остается постоянной, а продолжает расти. То есть можно говорить о том, что при данном виде движения график зависимости скорости от времени представляет собой прямую линию, а вот график зависимости пройденного расстояния от времени является частью параболы:
s = v₀t + at²/2
И через одну секунду после начала движения данное тело пройдет расстояние:
Пусть масса вагона равна М. Система движется, как целое, поэтому ускорение первого и второго вагонов одинаковое, пусть оно равно а. Силу трения можно не учитывать, она одинакова для первого и второго вагонов. Пусть между локомотивом и первым вагоном сила натяжения равна Т₁, между первым и вторым вагонами Т₂. Тогда II з-н Ньютона в проекции на ось ОХ, направление которой совпадает с направлением движения запишется для первого вагона так: Ма = Т₁ - Т₂ А для второго так: Ма = Т₂ Решая эту простенькую систему получим, что Т₁ = 2Ма; Т₂ = Ма. Отсюда Т₁/Т₂ = 2.
Со скоростью - все верно: v = v₀ + at
и через 1 секунду после начала движения скорость тела будет:
v = 1 + 0,5 · 1 = 1,5 (м/с)
А вот с пройденным расстоянием не все так просто. Дело в том, что скорость тела возрастает не дискретно и моментально при прохождении одной секунды, а линейно и поступательно. Это означает, что скорость тела внутри любого промежутка времени не остается постоянной, а продолжает расти. То есть можно говорить о том, что при данном виде движения график зависимости скорости от времени представляет собой прямую линию, а вот график зависимости пройденного расстояния от времени является частью параболы:
s = v₀t + at²/2
И через одну секунду после начала движения данное тело пройдет расстояние:
s₁ = 1 · 1 + 0,5 · 1 : 2 = 1,25 (м)