Теперь вычислим относительную погрешность измерения g:
ε g = ε L + 2*ε pi + 2*ε t ср.
ε pi - это погрешность округления Пи (= | (3,14 - 3,14159)/3,14 | *100% = 0,051%), ею можно пренебречь, т.к. в расчётах использовалось округлённое значение 3,14, тогда:
ε g = ε L + 2*ε t ср. = 0,002 + 0,2 = 0,202
Определим абсолютную погрешность Δg:
Δg = ε g * g cp. = 0,202 * 10,18 = 2,06
g cp. - Δg ≤ g ≤ g cp. + Δg
10,18 - 2,06 ≤ 9,8 ≤ 10,18 + 2,06
8,12 ≤ 9,8 ≤ 12,24
Известное значение ускорения свободного падения входит в интервал, значит всё ок. Измерения сделали нормальные.)
Механические свойства материалов определяют поведение конструкций под действием внешних нагрузок. Последние вызывают разрушение либо деформацию материалов. Сопротивление материалов механическому разрушению характеризуется их прочностными свойствами: прочностью, твердостью, истираемостью, сопротивлением удару, износом материалов изменять под нагрузкой форму и размеры характеризуется деформационными свойствами: упругостью, пластичностью, хрупкостью и ползучестью.Под действием внешних сил строительные конструкции претерпевают деформацию. Изменение формы и размеров тела под действием внешних сил называется деформацией. При этом твердые тела по-разному реагируют на снятие нагрузки, проявляя свойства упругости или пластичности.Упругость - свойство материала восстанавливать свои форму и объем после прекращения действия внешних сил. Упругую деформацию называют обратимой. Наибольшее напряжение, при котором действует лишь упругая деформация, называют пределом упругости. В области упругих деформаций действителен закон Гука ~ деформация материала пропорциональна действующему напряжению.Пластичность - свойство материала необратимо деформироваться под действием внешних сил. Пластическая (остаточная) деформация, не исчезающая после снятия нагрузки, называется необратимой.Механические свойства материалов характеризуются диаграммой деформаций, которую строят в координатах «механическое напряжение а - относительная деформацияНачальные участки диаграмм деформирования - прямолинейны. Это означает, что материал работает как упругое тело и его деформация пропорциональна напряжению. Связь деформаций £ и напряжений о в области упругой работы материала на участке ОА описывается с закона Гука
Найдём среднее время:
t ср. = (t1 + t2 + t3 + t4 + t5 + t6) / n = 34,26 + 34,31 + 34,31 + 34,15 + 34,38 + 34,41) / 6 = 34,3 с
Расчёты для абсолютной погрешности Δt:
Δt = | t - t ср. |
Δt1 = | t1 - t ср. | = | 34,26 - 34,3 | = 0,04
Δt2 = | t2 - t ср. | = | 34,31 - 34,3 | = 0,01
Δt3 = | t3 - t ср. | = | 34,31 - 34,3 | = 0,01
Δt4 = | t4 - t ср. | = | 34,15 - 34,3 | = 0,15
Δt5 = | t5 - t ср. | = | 34,38 - 34,3 | = 0,08
Δt6 = | t6 - t ср. | = | 34,41 - 34,3 | = 0,11
Определим среднюю абсолютную погрешность Δt cp.:
Δt cр. = (Δt1 + Δt2 + Δt3 + Δt4 + Δt5 + Δt6) / 6 = 0,07
Вычислим среднее ускорение свободного падения, выразив его из равенства периодов:
Т = t/N
T = 2pi*√(L/g ср.)
t ср./N = 2pi*√(L/g ср.)
g ср. = 4pi²*(L*N²)/t²cр. = 4*3,14²*(0,759*20²)/34,3² = 10,18 м/с²
Далее найдём среднюю относительную погрешность времени:
ε t ср. = (Δt cр. / t ср.) * 100% = (0,07 / 34,3) * 100% = 0,2
Вычислим относительную погрешность измерения длины маятника:
ε L = ΔL/L
абсолютная погрешность ΔL = ΔL изм. ленты + ΔL отсчёта = 0,001 + 0,0005 = 0,0015
ε L = ΔL/L = 0,0015 / 0,759 = 0,002
Теперь вычислим относительную погрешность измерения g:
ε g = ε L + 2*ε pi + 2*ε t ср.
ε pi - это погрешность округления Пи (= | (3,14 - 3,14159)/3,14 | *100% = 0,051%), ею можно пренебречь, т.к. в расчётах использовалось округлённое значение 3,14, тогда:
ε g = ε L + 2*ε t ср. = 0,002 + 0,2 = 0,202
Определим абсолютную погрешность Δg:
Δg = ε g * g cp. = 0,202 * 10,18 = 2,06
g cp. - Δg ≤ g ≤ g cp. + Δg
10,18 - 2,06 ≤ 9,8 ≤ 10,18 + 2,06
8,12 ≤ 9,8 ≤ 12,24
Известное значение ускорения свободного падения входит в интервал, значит всё ок. Измерения сделали нормальные.)
Вот как-то так.