М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
WhiteMIA131
WhiteMIA131
03.09.2021 19:51 •  Физика

С рычага, опирающегося на точку O, поднимают груз весом 300 Н. Какую минимальную силу нужно приложить к
точке Б, чтобы поднять груз? Расстояние OA равно 30 см,
расстояние АБ равно 110 см.

👇
Открыть все ответы
Ответ:

g = 9.81

1)Расстояние между мальчиком и стеной - перпендикуляр от мальчика к стенке ,т.е. пройденное путь по x. Проекция скорость на ось OX равна Vx = V * cos(a) (V - скорость мяча ,a - угол по которым кидают мяч) . Пройденный путь соответственно  равен S = Vx * t = V*cos(a) * t = 8.7 м

2) Стоит рассмотреть случай ,если мяч ударяется о горизонтальную стенку . Тогда проекция скорости на ось OY , Vy = V * sin(a) (  (V - скорость мяча ,a - угол по которым кидают мяч )  .Пройденный путь соответственно  равен S = Vy*t - gt^2/2 ( Уравнение ускоренного движения ) S = V*sin(a) * t - gt^2/2 = 8.8 м

ответ : 8.7 м ;  8.8 м

4,4(91 оценок)
Ответ:
hramkova1983
hramkova1983
03.09.2021

v = \sqrt{ \frac{2g}{ 1/h + 1/R_3 } } \approx 2  км/с .

v = \sqrt{2gh} \approx 2  км/с ;

Объяснение:

h = 206  км  = 206 \ 000  м – максимальная высота подъёма ;

R_3 = 6 \ 400  км  = 6 \ 400 \ 000  м – радиус Земли ;

g = 10  м/c² – ускорение свободного падения на поверхности ;

v = ?  – найти начальную скорость.

Далее в решении мы никак не будем учитывать вращение Земли, поскольку дело происходит на полюсе, где линейная скорость вращения поверхности земли относительно её центра пренебрежимо мала.

Потенциальная энергия гравитационного взаимодействия тел, когда её общее изменение необходимо учесть на расстояниях, отличающихся на величину, соизмеримую с радиусом Земли, описывается выражаением:

W_G = - \gamma \cdot \frac{Mm}{r}  ,  где  M  и  m  – большое и малое гравитирующие тела, а  r  – расстояние между ними.

Правильность такого расчёта легко проверить следующим образом. Пусть тела находятся на расстоянии  r_o  , а затем под действием гравитации приближаются на расстояние  ( r_o - \Delta r )  . Значит их потенциальная энергия уменьшится со значения  W_{Go} = - \gamma \cdot \frac{Mm}{r_o}  , до значения  W_{Gn} = - \gamma \cdot \frac{Mm}{ r_o - \Delta r }  . Падение потенциальной энергии таким образом (равное росту кинетической):

\Delta W_{G} = W_{Go} - W_{Gn} = [ - \gamma \cdot \frac{Mm}{r_o} ] - [ - \gamma \cdot \frac{Mm}{ r_o - \Delta r } ] =

= \gamma Mm ( \frac{1}{ r_o - \Delta r } - \frac{1}{r_o} ) = \gamma Mm \cdot \frac{ r_o - ( r_o - \Delta r ) }{ ( r_o - \Delta r ) r_o } \approx \gamma Mm \cdot \frac{ \Delta r }{ r_o^2 }  ;

(*)  \Delta W_{G} = \gamma Mm \cdot \frac{ \Delta r }{ r_o^2 }  ;

Но с другой стороны, падение потенциальной энергии равно работе гравитационного поля:

(**)  \Delta W_{G} = \Delta A_G = F_G \cdot \Delta r = ( \gamma \cdot \frac{Mm}{r_o^2} ) \cdot \Delta r  ;

Как легко видеть, выражения (*) и (**) – равны, что доказывает справедливость описания потенциальной энергии гравитационного взаимодействия выражением:

W_G = - \gamma \cdot \frac{Mm}{r}  ;

Общая механическая энергия (вместе с кинетической  E  ) в верхней точке будет такой же, какой была в нижней, за вычетом  A_{conp}  работы сил сопротивления среды (атмосферы):

W_{Go} + E_o - A_{conp} = W_{Gn} + E_n  ;

Поскольку сопротивление мы не учитываем (пренебрегаем), то уравнение принимает вид:

- \gamma \cdot \frac{Mm}{r_o} + \frac{mv^2}{2} = - \gamma \cdot \frac{Mm}{r_n} + 0  ;

Умножим на  \frac{2}{m}  :

v^2 = 2 \gamma \cdot \frac{M}{r_o} - 2 \gamma \cdot \frac{M}{r_n}  ;

v^2 = 2 \gamma M ( \frac{1}{r_o} - \frac{1}{r_n} ) = 2 \gamma M ( \frac{1}{ R_3 } - \frac{1}{ R_3 + h } ) =

= 2 R_3 \gamma \cdot \frac{M}{R_3^2} ( 1 - \frac{R_3}{ R_3 + h } ) = 2 g \cdot \frac{R_3 h}{ R_3 + h }  ;

v = \sqrt{ \frac{2g}{ 1/h + 1/R_3 } } \approx \sqrt{ 20 / ( \frac{1}{206 \ 000} + \frac{1}{ 6 \ 400 \ 000 } ) }  м/с  \approx 1998  м/с  \approx 1.998  км/с \approx 2  км/с .

Мы пренебрегли сопротивлением воздуха, так что вычислять так точно падение потенциальной энергии с учётом меняющегося  g  не имеет практического смысла. Можно посчитать то же самое и по более простому, приближённому алгоритму:

\frac{mv^2}{2} = mgh  ;

v^2 = 2gh  ;

v = \sqrt{2gh} \approx \sqrt{ 20 \cdot 206 \ 000 }  м/с  \approx 2030  м/с  \approx 2  км/с ;

*** Вообще, всё выглядит немного странно, тут подозрительно странным числом указана высота. К чему это 206? Возможно в исходном условии было:  h = 2 \cdot 10^3  км  = 2 \cdot 10^6  м.

Тогда бы верное решение получалось только первым

v = \sqrt{ \frac{2g}{ 1/h + 1/R_3 } } \approx \sqrt{ 20 / ( \frac{1}{2 \ 000 \ 000} + \frac{1}{ 6 \ 400 \ 000 } ) }  м/с  \approx 5520  м/с  \approx 5.52  км/с  \approx 5.5  км/с .

В упрощённом варианте подсчёта при этом была бы уже значительная ошибка:

v = \sqrt{2gh} \approx \sqrt{ 20 \cdot 2 \ 000 \ 000 }  м/с  \approx 6325  м/с  \approx 6.3  км/с .

4,4(72 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ