Объяснение:
Согласно закону Стефана-Больцмана повышение температуры в 1.5 раза (9000К/6000К) приведет к повышению светимости тела всего в 1.5^4 = 5 раз. Так что Столь гигантская разница в светимости Денеба и Солнца объяснятся разным размером, точнее площадью - которая пропорциональна квадрату диаметра.
E/e = (T^4/t^4)*D^2/d^2
где
E и e - светимость Денеба и Солнца
T и t - температура Денеба и Солнца
D и d - диаметры Денеба и Солнца
или
D/d = корень((E/e)*(е^4/Е^4)) = корень(6000/5) = 108
То есть Ригель примерно в 100 раз больше Солнца
Кстати, согласно Вики
Ригель имеет
светимость 126000 светимостей Солнца
температуру 12300К
диаметр 75 диаметров Солнца
Мне так представляется, что ускорение мела (замедление, если угодно, отрицательное ускорение) в данной задаче постоянно.
Почему так?
Сила трения Fтр = N * mu = m * g * mu
Ускорение (как учил старина Ньютон) а = F / m.
В направлении движения, на мел действует единственная сила - трения, других я из условия не усматриваю.
Следовательно, ускорение
а = m * g * mu / m = g * mu = 10 * 0,3 = 3 м/с2
Обычное тело в таких условиях ехало бы путь
Х = v^2 / (2a) = 121 / 6 = 20,1666 м, но эх, какая незадача - мел истирается. Ок, так сколько же метров сможет вообще проехать мел до полной аннигиляции при условии заданных цифр?
х = 8 г / 0,5 г/м = 16 м. Жаль, недолог его путь. Но зато мы уже более близки к ответу.
Чисто технически мне проще сначала найти скорость u мела в момент его исчезновения.
х = ( v^2 - u^2 ) / (2a)
16 = (121 - u^2) / 6
u^2 = 25
u = 5 м/с - при этой скорости от мела, как от чеширского кота, остаётся лишь наглая глумливая ухмылка, и больше ничего.
Отсюда поищем время от начала движения до сего печального момента:
t = (v-u) / a = (11-5) / 3 = 2 c
Ну, может я ошибаюсь, но мне так кажется. Если, конечно, мел не украдут раньше в пути его следования.