Атмосфе́рное электри́чество — совокупность электрических явлений в атмосфере, а также раздел физики атмосферы, изучающий эти явления. При исследовании атмосферного электричества изучают электрическое поле в атмосфере, её ионизацию и электрическую проводимость, электрические токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и многое другое[что?]. Все проявления атмосферного электричества тесно связаны между собой и на их развитие сильно влияют локальные метеорологические факторы. К области атмосферного электричества обычно относят процессы, происходящие в тропосфере и стратосфере.
Начало изучению атмосферного электричества было положено в XVIII веке американским учёным Бенджамином Франклином[1], экспериментально установившим электрическую природу молнии, и русским учёным Михаилом Ломоносовым — автором первой гипотезы, объясняющей электризацию грозовых облаков. В XX веке были открыты проводящие слои атмосферы, лежащие на высоте более 60—100 км (ионосфера, магнитосфера Земли), установлена электрическая природа полярных сияний и обнаружен ряд других явлений. Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами.
Две основные современные теории атмосферного электричества были созданы английским учёным Ч. Вильсоном и советским учёным Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрическое поле атмосферы объясняется всецело электрическими явлениями, происходящими в тропосфере, — поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрических процессов.
Исследования атмосферного электричества позволяют выяснить природу процессов, ведущих к колоссальной электризации грозовых облаков, в целях прогноза и управления ими; выяснить роль электрических сил в образовании облаков и осадков; они дадут возможность снижения электризации самолётов и увеличения безопасности полётов, а также раскрытия тайны образования шаровой молнии.
Пусть S(км)-расстояние между пунктами А и B
Течение имеет направления от пункта А к пункту B (t1<t2)
Скорость по течению равна сумме собственной скорости катера и скорости течения
V1=Vc+Vтеч
Скорость против течения равна разности собственной скорости катера и скорости течения
V2=Vc-Vтеч
V1*t1=S
V2*t2=S
Мотор выключили,значит собственная скорость катера равна 0.
V3=Vтеч
V3*t3=S
(Vc+Vтеч)*t1=S
(Vc-Vтеч)*t2=S
(Vc+Vтеч)*t1=(Vc-Vтеч)*t2
Vc*t1+Vтеч*t1=Vc*t2-Vтеч*t2
Vс*(t2-t1)=Vтеч(t1+t2)
Vc=Vтеч*()
Vтеч*(1+)*t1=S
Vтеч*()*t1=S
Vтеч*()=S
Vтеч*t3=S
t3=
t3=(2*3*6/(6-3))ч=12ч
ответ:t3=12ч
Объяснение:
полупроводники, которые стоят в 3 группе таблицы менделеева. Например Ga - галлий или Индий In