Лед получим тепло от медного тела, при эотм часть льда расплавилась, и еще осталось твердым 2,8 кг .Выразим массу расплавившегося льда m1=m - 2,8 ( от первоначальной массы льда отнимем массу оставшегося, это и будет масса расплавившегося льда) . По уравнению теплового баланса: Q1+Q2=0 (Q1-количество теплоты, отданное медным телом, при его остывании от70град до 0. Q2- количество теплоты полученное льдом, для плавления массы m1). Q1=c*m2( t - t2) ( t=0, t2=70, c-удельная теплоемкость меди =380Дж / кг*град.) . Q2= лямбда*m1= лямбда ( m - 2,8) , подставим в уравнение теплового баланса и решим относительно m. c*m2( t - t2) + лямбда*( m-2,8)=0 ( лямбда- удельная теплота плавления льда) . m=( лямбда*2,8 - с*m2( t - t2)) / лямбда. m=2,99345кг.
По закону сохранения импульса: m1(v1 - v0) - (M+m2)v0=0, v1-скорость первого рыбака относительно лодки, v1=L/t его движение равномерное, v0 - скорость лодки, которую она приобретает при этом, за время t лодка передвинется равномерно на искомое расстояние ΔL1=v0*t. После замены скоростей в законе сохранения получим: m1*L=m1*ΔL1+(M+m2)ΔL1, ΔL1=m1L/(M+m1+m2). Аналогично при перемещении второго рыбака ΔL2=m2L/(M+m1+m2). В результате разность этих величин дает смещение лодки ΔL=(m1 - m2)*L/(M+m1+m2), когда оба рыбака меняются местами.
( от первоначальной массы льда отнимем массу оставшегося, это и будет масса расплавившегося льда) . По уравнению теплового баланса: Q1+Q2=0
(Q1-количество теплоты, отданное медным телом, при его остывании от70град до 0. Q2- количество теплоты полученное льдом, для плавления массы m1).
Q1=c*m2( t - t2) ( t=0, t2=70, c-удельная теплоемкость меди =380Дж / кг*град.) .
Q2= лямбда*m1= лямбда ( m - 2,8) , подставим в уравнение теплового баланса и
решим относительно m. c*m2( t - t2) + лямбда*( m-2,8)=0 ( лямбда- удельная теплота плавления льда) . m=( лямбда*2,8 - с*m2( t - t2)) / лямбда. m=2,99345кг.