Объяснение:
Дано:
ν = 1 моль
i = 3 - (число степеней свободы одноатомного газа)
<Vкв₁> = 350 м/с
<Vкв₂> = 380 м/с
p - const
A = 292 Дж
M - ?
1)
Учтем, что среднеквадратичная скорость:
<Vкв> = √ (3·R·T/M)
Возведем в квадрат:
<Vкв>² = 3·R·T/M
Тогда температура:
T₁ = <Vкв₁>² ·M / (3·R)
T₂ = <Vкв₂>² ·M / (3·R)
Разность температур:
ΔT = T₂ - T₁ = (<Vкв₂>² - <Vкв₁>²) ·M / (3·R)
Чтобы не загромождать решение, вычислим:
ΔT = (380² - 350²) ·M / (3·8,31) ≈ 878·M (К) (1)
2)
Работа при изобарном процессе:
A = ν·R·ΔT
или, с учетом результата (1)
A = 878·ν·R·M
Молярная масса:
M = A / (878·ν·R) = 292 / (878·1·8,31) ≈ 40·10⁻³ кг/моль (похоже на Ar (аргон))
Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы. Работой, совершаемой постоянной силой F, называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла между векторами силы F и перемещения S:
Формула Механическая работа
Работа является скалярной величиной. Она может быть как положительна (0° ≤ α < 90°), так и отрицательна (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю. В системе СИ работа измеряется в джоулях (Дж). Джоуль равен работе, совершаемой силой в 1 ньютон на перемещении 1 метр в направлении действия силы.
Если же сила изменяется с течением времени, то для нахождения работы строят график зависимости силы от перемещения и находят площадь фигуры под графиком – это и есть работа:
Работа как площадь под графиком
Примером силы, модуль которой зависит от координаты (перемещения), может служить сила упругости пружины, подчиняющаяся закону Гука (Fупр = kx).
Объяснение: