Зако́н Архиме́да: на тело, погружённое [1] в жидкость (или газ) , действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа) (называемая силой Архимеда) FA = ρgV, где ρ — плотность жидкости (газа) , g — ускорение свободного падения, а V — объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности) . Если тело плавает на поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа) , и приложена к центру тяжести этого объёма. Тело плавает, если сила Архимеда уравновешивает силу тяжести тела. Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости) . Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.
Дано
vo=10 м/с
<a=45 град
|AB|= 4м
g= 10м/с2
-------------------
∆t -?
РЕШЕНИЕ
Из условия ясно , Камень№2 должен преодолеть расстояние ВА=4 м, чтобы пересечь
траекторию Камня№1 - точка пересечения траекторий только ОДНА.
Определим время встречи камней.
Пусть
t - время движения Камень№2 -вылетел позже
t + ∆t - время движения Камень№1 - вылетел раньше
второй камень
время движения t
направление движения - по траектории
горизонтальное -равномерное
х=vo*cosa*t ; t= x/( vo*cosa)
подставим значения х=|АВ|= 4м
t=4/(10*√2/2) =2√2 /5 c
вертикальное движение - равноускоренное
y=vo*sinа*t-gt^2/2 (1)
время известно, подставим t в (1) , найдем конечную высоту Камень№2
y= vo*sinа*t-gt^2/2 = vo*sinа* Х / ( vo*cosa) -g*( x/( vo*cosa))^2/2= х- g*( x/( vo*cosa))^2/2
y=4- 10*(2√2 /5))^2/2= 2.4 м - это высота , на которой встретятся камни
первый камень
время движения t + ∆t
направление движения строго вертикальное - равноускоренное
уравнение движения
y=vo(t + ∆t )-g(t + ∆t)^2/2
подставим
время t=2√2 /5 c
высота встречи y=2.4 м
остальные значения из условия
найдем ∆t
2.4=10(2√2 /5 + ∆t ) - 10 (2√2 /5 + ∆t)^2/2
преобразуем
2.4=4√2 +10∆t - 5 *(8/25+ 2*2√2 /5* ∆t + ∆t^2)
2.4=4√2 +10∆t - 1.6 - 4√2*∆t - 5∆t^2
0= -2.4+4√2 +10∆t - 1.6 - 4√2*∆t -5∆t^2
0= -4+4√2 +(10 - 4√2)*∆t - 5∆t^2
0= 4(√2-1) +(10 - 4√2)*∆t - 5∆t^2
решим квадратное уравнение
5∆t^2 -(10 -4√2)*∆t - 4(√2 -1) = 0
∆t1=1/5*(5-2√2-√13) ≈ -0.286796
∆t2=1/5*(5-2√2+√13) ≈ 1.15542
по смыслу задачи ∆t ≈ 1.15542
ответ ∆t ≈ 1.15542