Рычаг применяется в разных случаях. Например, качели. Это забава, которая образована благодаря рычагу. Веник, как бы это не странно, тоже является рычагом. Благодаря велику можно быстрее навести чистоту. Есть множество разных примеров, где применяется рычаг. И мы можем сделать вывод, что мы применяем его, даже не замечая этого, в повседневной жизни.
ВОДОПОДЪЕМНЫЕ МЕХАНИЗМЫ состоят из насосов, гидравлических таранов, гидроавтоматов, использующих падение водного источника для подъема части воды того же самого источника, и из водоподъемных колес.
Эскаватор
В цепи, содержащей конденсатор и катушку индуктивности , могут возникнуть электромагнитные колебания. Поэтому такая цепь называется колебательным контуром.
РИС.122 РИС.123 РИС.124
Если заряженный конденсатор замкнуть на катушку индуктивности, то в контуре возникает убывающий по величине ток (рис.122). Вследствие этого в катушке возникает ЭДС индукции, противодействующая убыванию тока, поддерживающая ток и после окончательной разрядки конденсатора. Следовательно, энергия электрического поля в конденсаторе переходит в энергию магнитного поля в катушке.
Когда конденсатор полностью разрядится, то ток в цепи поддерживается за счет энергии магнитного поля (рис.123), что приводит к перезарядке конденсатора и, соответственно, к переходу энергии магнитного поля в энергию электрического поля.
В реальном колебательном контуре необходимо учитывать сопротивление входящих в него проводников, а, следовательно, при протекании тока часть энергии электрического и магнитного поля выделяется в виде количества теплоты. Поэтому в реальном колебательном контуре электромагнитные колебания очень быстро прекращаются, а сопротивление, на котором энергия электрического тока переходит в тепловую, называется активным.
Рассмотрим колебательный контур, содержащий последовательно включенные емкость, индуктивность, активное сопротивление и источник внешней переменной ЭДС (рис.124).
За счет работы сторонних сил внешней ЭДС совершается работа на всех участках цепи, а следовательно:
, , , или
- уравнение колебаний величины заряда на пластинах конденсатора (уравнение колебательного контура).
Его решение позволяет найти зависимость величины заряда на пластинах конденсатора от времени q=f(t), а затем I=f(t) и Uc=f(t).
Электромагнитные колебания называются свободными, если источник внешней ЭДС отсутствует . Рассмотрим идеальный колебательный контур, т.е. активное сопротивление которого R=0. Пусть в начальный момент времени конденсатор полностью заряжен (рис.122).
В этом случае уравнение свободных колебаний: ,
решением которого является , т.к. при t=0 заряд конденсатора максимален. Следовательно, свободные электромагнитные колебания в контуре являются гармоническими. - собственная циклическая частота электромагнитных колебаний в контуре, - формула Томсона для периода.
Тогда , напряжение на конденсаторе . Из этих уравнений следует, что ток опережает по фазе колебания заряда и напряжения на , т.е. когда ток достигает максимальной величины заряд и напряжение на конденсаторе равны нулю и наоборот (рис.125).
РИС.125
Так как при R=0 потерь энергии на тепло нет, то выполняется закон сохранения энергии: . Следовательно, колебания заряда, тока и напряжения происходят с постоянной амплитудой, т.е. свободные колебания в идеальном контуре являются незатухающими.
Энергия электрического поля в конденсаторе и магнитного поля в катушке индуктивности, оставаясь все время положительными, также меняются по величине, но с периодом в 2 раза меньшим, чем период колебаний величины заряда и тока (рис.125).
1.если я правильно почитала то 106,8
2. день считать