Пусть начальная высота монетки h, конечная высота монетки h. энергия перед началом движения: e = m g h импульс перед началом движения: p = 0 e и p не должны меняться в процессе движения. энергия, после спуска с первой горки: e = (m/2) v^2 + (4m/2) u^2 импульс, после спуска с первой горки: p = m v - 4 m u (u - скорость движения первой горки после спуска монетки) два уравнения и две неизвестные: v, u (m/2) v^2 + (4m/2) u^2 = m g h m v - 4 m u = 0 из второго уравнения u = 4v подставим в первое: (m/2) 16 u^2 + 4 (m/2) u^2 = m g h 20 u^2 = 2 g h u^2 = g h /10 u = sqr(g h/10) тогда v = 4 sqr(g h/10) энергия в момент остановки монетки на второй горке: e = (m/2) y^2 + (5m/2) y^2 + (4m/2) u^2 + m g h импульс в момент остановки монетки на второй горке: p = - 4 m u + m y + (5 m) y (y - скорость движения второй горки вместе с монеткой в момент остановки монетки относительно второй горки) опять получаем систему из 2 уравнений и двух неизвестных y, h: (m/2) y^2 + (5m/2) y^2 + (4m/2) u^2 + m g h = m g h - 4 m u + m y + (5 m) y = 0 из второго уравнения: 6 y = 4 u y = 2 u /3 первое уравнение (m/2) y^2 + (5m/2) y^2 + (4m/2) u^2 + m g h = m g h 3 y^2 + 2 u^2 + g h = g h подставим y = 2 u/3: (4/3) u^2 + 2 u^2 + g h = g h g h = g h - (10/3) u^2 подставим u = sqr(g h/10): g h = g h - g h/3 h = (2/3)h ответ: монетка поднимется на 2/3 от начальной высоты
На расстояниях, сравнимых с размерами самих молекул, заметнее проявляется притяжение, а при дальнейшем сближении — отталкивание.
Объяснение:
Между молекулами существует взаимное притяжение. Каждая молекула притягивает к себе все соседние молекулы, и сама притягивается ими.
Когда мы разрываем нить, ломаем палку или отрываем кусочек бумаги, то преодолеваем силы притяжения между молекулами.
Если смочить листы водой, то они слипнутся, так как молекулы воды приблизятся к молекулам бумаги настолько, что будут действовать силы притяжения.