1) Под равновесием понимают состояние покоя тела по отношению к инерциальной системе отсчёта, связанной с обычно с неподвижным телом.
2) В состояние равновесия тело находится в покое ( вектор скорости равен нулю) в выбранной системе отсчёта либо движется равномерно прямолинейно или вращается без касательного ускорения
3)Неустойчивое равновесие, Устойчивое равновесие, Безразличное равновесие.
4) Равновесие называется устойчивым, если после небольших внешних воздействий тело возвращается в исходное состояние равновесия
5)Устойчивее всего будет центральномоторный автомобиль, с полным приводом, низким центром тяжести, широкой колеей, и достаточно длинной колесной базой. Еще одним важными моментами, являются аэродинамика, вес автомобиля и его развесовка по осям.
6)Центр масс — точка, положение которой характеризует распределение массы в теле или механической системе. У однородных симметричных тел (сферы, цилиндра, тел прямоугольной формы и др.)
Центр масс располагается в геометрическом центре тела. У некоторых тел, например у кольца, центр масс находится вне тела. При движении тела (системы) его центр масс движется как материальная точка массой, равной массе всего тела, к которой приложены силы, под действием которых тело движется.
Центр тяжести — геометрическая точка, неизменно связанная с твердым телом, через которую проходит равнодействующая сил тяжести, действующих на частицы этого тела, при любом его положении в пространстве.
На 7 вопрос ответа не знаю
Объяснение:
ответ: h≈1,037 м.
Объяснение:
Пусть h и M - искомая толщина и масса льдины, а H - глубина водоёма. Пусть ρ1=900 кг/м³ - плотность льда, а ρ2=1000 кг/м³ - плотность воды. Пусть S=1 м² - площадь поверхности льдины, а Т=2 с - период колебаний льдины с человеком, масса которого m=80 кг. Возьмём координатную ось ОХ, совместим её начало О с дном водоёма и направим её вертикально вверх. Пусть x0 - координата нижнего края льдины до наступления на неё человеком. Так как в это время льдина плавает, то по второму закону Ньютона ρ2*S*(H-x0)*g-ρ1*S*h*g=0, где g≈10 м/с² - ускорение свободного падения. Пусть x- координата нижнего края льдины после наступления на неё человеком. По второму закону Ньютона, ρ2*S*(H-x)*g-(ρ1*S*h+m)*g=(ρ1*s*h+m)*d²x/dt². Оно приводится к виду d²x/dt²+x*ρ2*S*g/(ρ1*S*h+m)=(ρ2*S*x0*g-m*g)/(ρ1*S*h+m). Наконец, обозначая A=ρ2*S*g/(ρ1*S*h+m) и B=(ρ2*S*x0*g-m*g)/(ρ1*S*h+m), запишем это уравнение в виде x"+A*x=B. Это - неоднородное ЛДУ 2 порядка с постоянными коэффициентами, решение которого имеет вид: x=x1+x2, где x1 - общее решение однородного уравнения x1"+A*x1=0, а x2 - частное решение данного неоднородного уравнения. Для решения уравнения x1"+A*x1=0 составляем характеристическое уравнение (ХУ): k²+A=0. Так как A>0, то это уравнение имеет комплексные корни k1=i*√A и k2=-i*√A, где i=√(-1. Отсюда x1=C1*cos(t*√A)+C2*sin(t*√A)=C*sin(t*√A+α), где C1 и C2 - произвольные постоянные, C=√(C1²+C2²), α=arctg(C1/C2). Частное решение x2=B/A. Тогда x=x1+x2=C*sin(2*π*t/T+α)+B/A. Отсюда следует, что 2*π/T=√A, откуда A=ρ2*S*g/(ρ1*S*h+m)=4*π²/T² и h=ρ2*g*T²/(4*π²*ρ1)-m/(ρ1*S)≈1,037 м.